Oxygen Binding Materials and Highly Efficient Modular System for Oxygen Production DE-FE-0027995

S. James Zhou

April 10, 2018

delivering **the promise of science** for global good

www.rti.org

RTI International is a registered trademark and a trade name of Research Triangle Institute.

Project Summary

Objective: Develop a process for efficient O_2 separation from air using adsorbents or membranes with oxygen carriers to produce high purity oxygen

- Process can be scaled up in modular form or in large-scale industrial processes
- Process should be competitive with current state-of-the-art processes
- Sorbent bed-factor of less than 600 lb-sorbent/TPD O₂ (tons/day O₂)
- An O₂/N₂ separation factor greater than 20 for membranes

Specific Challenges:

- Develop reversible oxygen binding solid materials with high O₂ capacity and selectivity
- Translate the reversible oxygen adsorption property of cobalt complexes to solid
 adsorbent or membrane form
- Optimize the chemical kinetics of oxygen adsorption on the sorbent
- Optimize the coordination environment of cobalt on the surface of the sorbent
- Determine oxygen separation process performances
- Consider use of the solid reversible oxygen binding materials on the surface of a membrane for oxygen separation at ambient temperatures

Timeframe: BP1:10/1/16 to 09/30/17, BP2:10/1/17 to 09/30/18

Oxygen Separation Processes

- Vacuum-swing adsorption process can be used with the O₂ sorbents developed as indicated by the adsorption isotherm
- Membrane separation process is a partial pressure driven process and requires high feed-side pressure and low permeate-side pressure. In this case, a vacuum pressure can be used for the permeate side

		Start date	End date	Months following contract award																
Task	Task title			Budget Period 1 (BP1)						Budget Period 2 (BP2)										
					3		6		9		12		15		18		21		1	24
1.0	Project Management and Planning	10/01/16	09/30/18																_	
2.0	Synthesis of O ₂ Binding Materials	10/01/16	05/31/17		-															
3.0	Characterization of O ₂ Binding Materials	11/01/16	09/30/17	¥	+															
4.0	Formation of O ₂ Binding Materials into Adsorbents and Membranes	12/01/16	07/31/17		•															
5.0	Adsorbents and Membranes in Air Separation Processes	02/01/17	09/30/17			V					-	NG								
6.0	Optimization of O_2 Binding Materials for Adsorbent and Membrane Formation	10/01/17	06/30/18								,									
7.0	Investigation of Material Performance in Air Separation Processes	12/01/17	07/31/18										•							
8.0	Design of a 5-TPD Modular Air Separation Unit	06/01/18	08/31/18																-	
9.0	Preliminary Techno-economic Analysis	08/01/18	09/30/18															1	-	
Milestone Log		(As noted)	(As noted)		12	3		4			5,6						7	8,9	10	11
Reporti	ng / Deliverables	(See footnote.)	(See footnote.)			Q		Q		Q		Q		Q		Q		Q	G	Q/F
Project Meeting		(See footnote.)	(See footnote.)		к						в							в		с

Q = Quarterly report due one month after quarter's end; F = Final report due three months after project end.

K = Project kick-off meeting; B = Project briefing (annual); C = Project closeout meeting

= <u>BP1 Go/No-Go Decision Point</u>: (i) O₂-binding solid adsorbents with O₂ capacity equal to or greater than 0.5 wt% and/or (ii) a membrane O₂/N₂ selectivity equal to or greater than 20.

BP	Task No.	Milestone Description	Planned Completion	Actual Completion	Verification Method
1	1	Updated Project Management Plan (PMP)	11/30/16	11/02/16	PMP file
1	1	Kickoff Meeting	12/31/16	12/02/16	Presentation file
1	2	Oxygen binding materials developed to initiate material characterization and O ₂ separation process testing	01/31/17	1/31/17	Quarterly Report
1	3	O ₂ binding material characterization completed	09/30/17	9/30/17	Quarterly Report/Final Report
1	2	Optimal O_2 binding down selected for adsorbent and membrane formation.	04/30/17	05/30/17	Quarterly Report
1	5	Achieve ≥ 0.5 wt% O ₂ capacity for adsorbents and O ₂ /N ₂ selectivity>20 for membrane	9/30/17	9/30/17	Quarterly Report

- Materials that selectively adsorb/bind oxygen
- Vacuum-pressure-swing adsorption (VPSA) process can be used with the O₂ sorbents developed as indicated by the adsorption isotherm
- Higher purity oxygen product stream
- Higher oxygen recovery rate
- No need to treat the larger stream of nitrogen
- Possible to produce pure N₂ at the same time

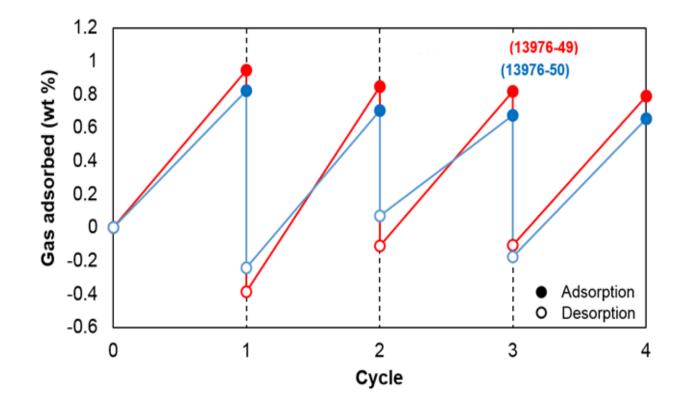
Comparison of State-of-Art (SOTA) Oxygen Separation Technologies

Technology	Status	Production (TPD)	Purity (vol%)	By-product Capability	Start-Up Time
Cryogenic	Mature	>1,000	99+	Excellent	Hours
PSA	Mature	<150	95	Poor	Minutes
Membrane	Semi-mature	<20	~40	Poor	Minutes
ITM	Developing	Unknown	99+	Poor	Hours
RTI	Developing	<50	95+	Excellent	Minutes
Technology					

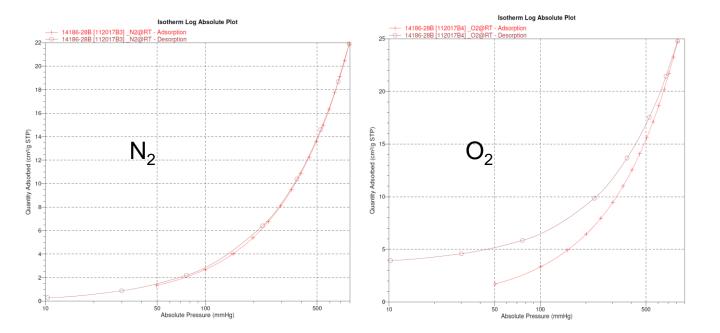
BSF as a Function of Oxygen Selective Sorbent O₂ Capacity

Sorbent Working Capacity (wt%)	O ₂ (TPD)	BSF (Ib sorbent/TPD O ₂)				
0.5	3.97	556				
1	7.95	278				
2	15.8	139				
3	23.8	92.8				
4	31.7	69.6				
1.3*	2.59	850				

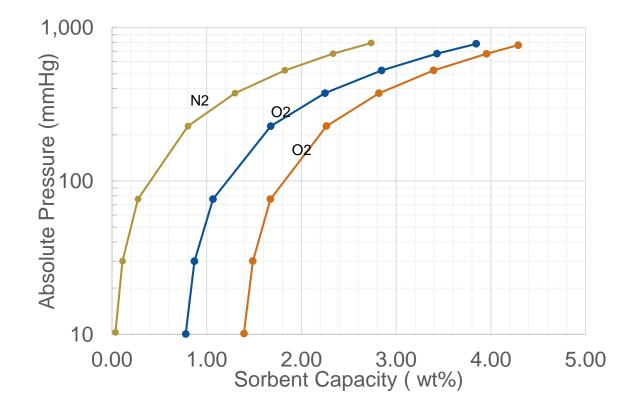
*SOTA N₂ selectivity sorbent


BSF: Bed Size Factor for PSA based system

Decision Point	Date	Success Criteria
GO/NO-GO decision points	9/31/2017	1) Selected O_2 binding materials made into adsorbents and membranes 2) Adsorbents with reversible O_2 capacity > 0.5wt% or 3) Membrane with O_2/N_2 selectivity > 20.
Completion of the project	9/30/2018	 Techno-economic analysis delivered to DOE; and Final report shows ≥95% O₂ purity and modular O₂ production system design

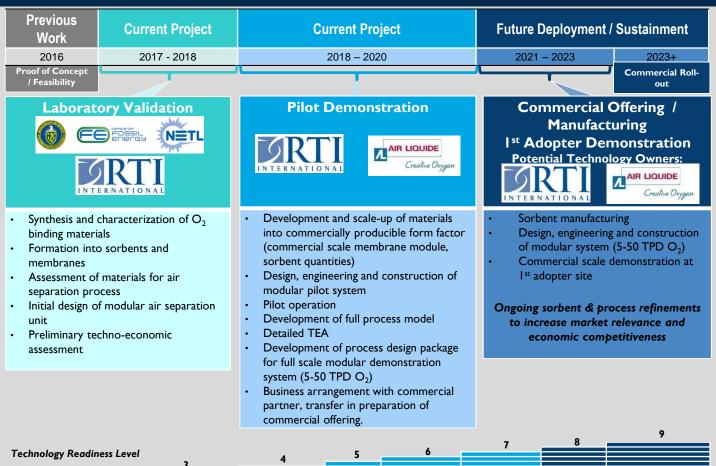

Characterization Adsorbent Materials

		Sorbent	BET surface area	Eleme	O ₂ ads.		
Sample #	Name	synthesis	(m²/g)	C (wt %)	N (wt %)	C/N	0 ₂ ads. (wt %)
MCM-41	MCM-41 silica	N/A	1033.7	0	0	0	
SBA-15	SBA-15 silica	N/A	896.9	0	0	0	
13976-31		Grafting	19.4	14.66	6.55	2.61	
13976-32		Grafting	465.4	9.69	4.22	2.68	
13976-36		Grafting	28.0	14.20	6.57	2.52	
13976-37		Grafting	193.4	8.86	4.00	2.59	
13976-38		Grafting	320.1	11.18	5.11	2.55	
13976-43		Grafting	418.8	6.47	1.80	4.19	
13976-44		Grafting	570.4	4.77	1.25	4.46	
13976-49		Grafting	182.3	9.01	3.14	3.35	0.95
13976-50		Grafting	324.4	6.07	2.02	3.50	0.82
13976-51		Grafting	307.5	7.17	2.41	3.47	
13976-52		Grafting	348.9	5.59	1.85	3.51	
13976-66		Co-cond.	394.2	5.98	1.18	5.92	1.76
13976-67		Co-cond.	306.9	5.19	1.01	5.97	1.70
13976-68		Grafting	130.6	7.38	0.75	11.53	1.33
13976-69		Grafting	230.0	5.22	0.61	10.02	1.47
13976-74		Grafting	305.7	6.27	1.15	6.39	1.33
13976-75		Grafting	160.0	7.44	1.99	4.37	0.92
13976-76		Grafting	282.0	5.71	0.90	7.38	1.08


O₂ Adsorption-Desorption Cycle Tests by TG-MS

N₂ and O₂ Isothermal Curves@ RT

Isothermal Curves (Desorption) of N₂ and O₂ @ RT



Task No.	Milestone Description	Planned Completion	Actual Completion	Verification Method
6	Selected O ₂ binding materials further optimized for capacity, selectivity and kinetics	6/30/18		Quarterly Report
7	Selected O ₂ binding materials' thermal, chemical and performance stability established	7/31/18		Quarterly Report
7	Achieve $\ge 95\% O_2$ purity in O_2 separation processes	7/31/18		Quarterly Report
1	Submit Annual Report	10/31/17		Annual Report
6	Selected O ₂ binding materials further optimized for capacity, selectivity and kinetics	6/30/18		Quarterly Report
8	5 TPD modular O ₂ production system designed	8/31/8		
9	Complete techno-economic analysis and issue TEA report	10/31/18		Final Technical Report
1	Submit Final Technical Report	10/31/18		Final Technical Report

Summary of Progress to Date

- Developed multiple synthesis routes for O₂ binding solid materials
- Synthesis optimization in progress for:
 - High O₂ adsorption capacity (already reached 0.5 wt% BP1 target)
 - 2. Rapid O_2 adsorption
 - 3. Enhanced O₂ binding reversibility
 - 4. Improved material stability
 - 5. Efficient and economic synthesis routes

Modular Oxygen Production – Technology Roadmap

Acknowledgments

 Financial support provided by DOE NETL under DE-FE0027995

- DOE Project Manager: Arun Bose
- RTI cost share and project partner Air Liquide

Questions?

Thank you!

