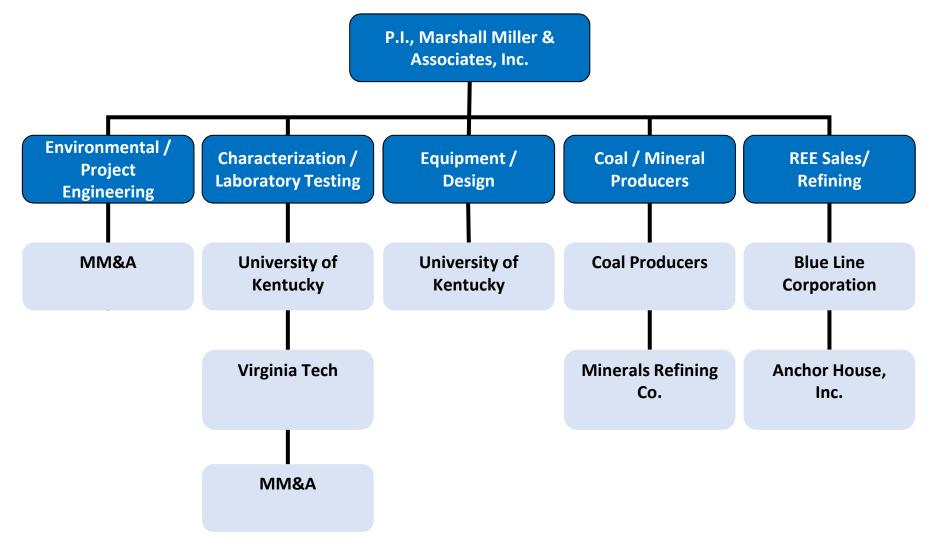
Production of Saleable Rare Earth Products from Coal and Coal Byproducts in the US Using Advanced Separation Technologies

2018 Annual Review Meeting Rare Earth Elements Program DOE/NETL Pittsburgh, PA April 10, 2018

Steve Keim Senior Vice President Marshall Miller & Associates

High-Level Project Summary

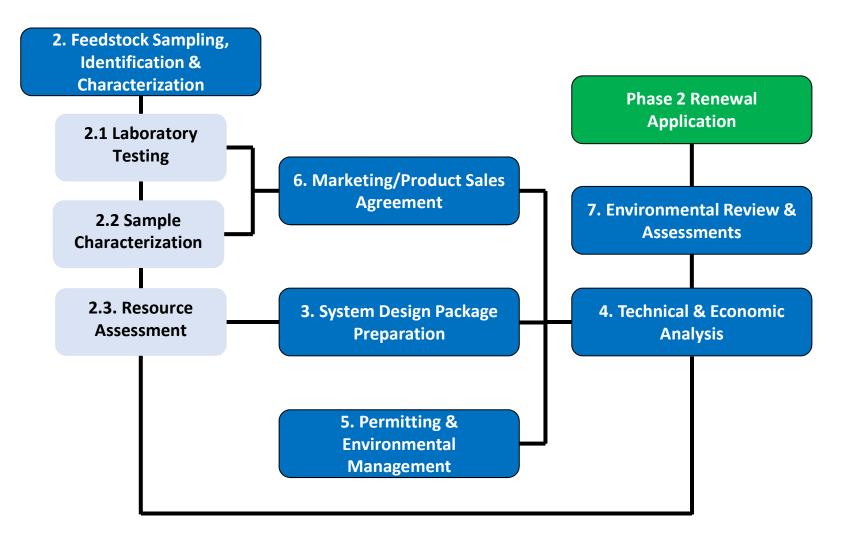
- Past research has shown that REE's are present in coal and coal byproducts, particularly the non-carbon bearing portions of coal deposits which are not economical to sell as a coal product. These are commonly referred to as "partings" or "high ash" material. Such material is included in run-of-mine coal and is removed in processing plants and discarded in refuse impoundments.
- > High-ash partings (and subsequently relatively high REE bearing material) is discarded in large volumes on a daily basis. Additionally, refuse impoundments contain significant volumes of material which contain REE's.
- > <u>This project aims to assess the feasibility of recovering REE's from high</u> <u>ash, discarded material.</u>



Overview of Project Team

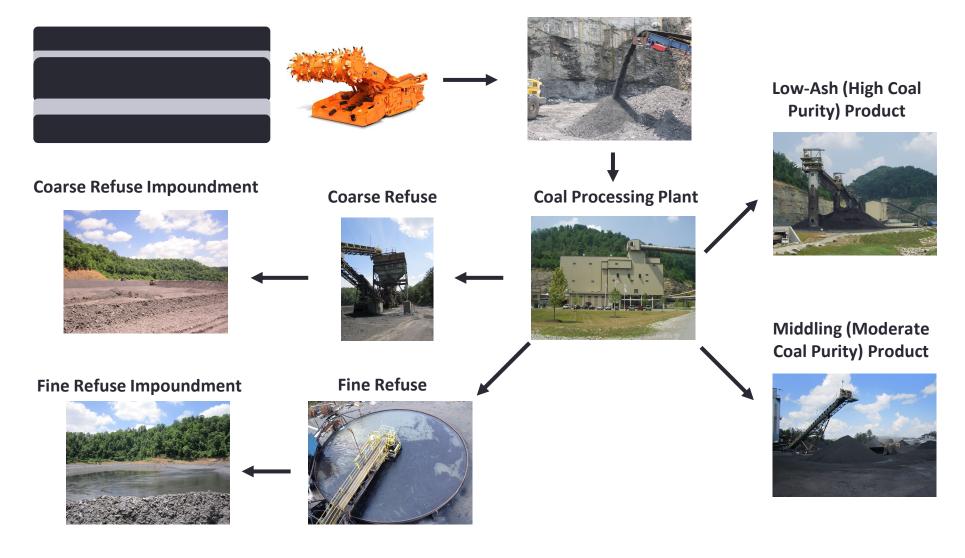
Project Schedule

	2017						2018								2019																
												g De																			
	J	J	Α	S	0	Ν	D	J	F	М	Α	М	J	J	Α	S	0	Ν	D	J	F	М	Α	М	J	J	А	S	0	Ν	D
Phase I - Engineering Development																															
Task 1.0 Project Management		<u> </u>																													
Task 2.0 Sampling, Identification & Characterization																															
Subtask 2.1 Sample Collection & Characterization																															
Subtask 2.2 Resource & Reserve Estimate																															
Subtask 2.3 Laboratory Testing																															
Subtask 2.4 Phase I Sample Analysis																															
Task 3.0 Systems Design Package Preparation																															
Subtask 3.1 Flowsheet Development																															
Subtask 3.2 Flowsheet Design																															
Subtask 3.3 Design Review/Fatal Flaw Analysis																															
Task 4.0 Techno-Economic Analysis																															
Subtask 4.1 Technical Evaluation																															
Subtask 4.2 Economic Evaluation																															
Task 5.0 Permitting & Environmental Management																															
Subtask 5.1 Site Permitting Plan																															
Subtask 5.2 Environmental Management Plan																					_										
Task 6.0 Production Sales Agreement Dvelopment																															
Subtask 6.1 Market Assessment																															
Subtask 6.2 Sales Agreement Development																					_										
Task 7.0 Envioronmental Review/Assessment																															
Subtask 7.1 Data/Information Collection																															
Subtask 7.2 EA/EIS Response/Mitigation																															
Task 8.0 Benchmark Process Audits																															
Task 9.0 Phase I Project Reporting																															

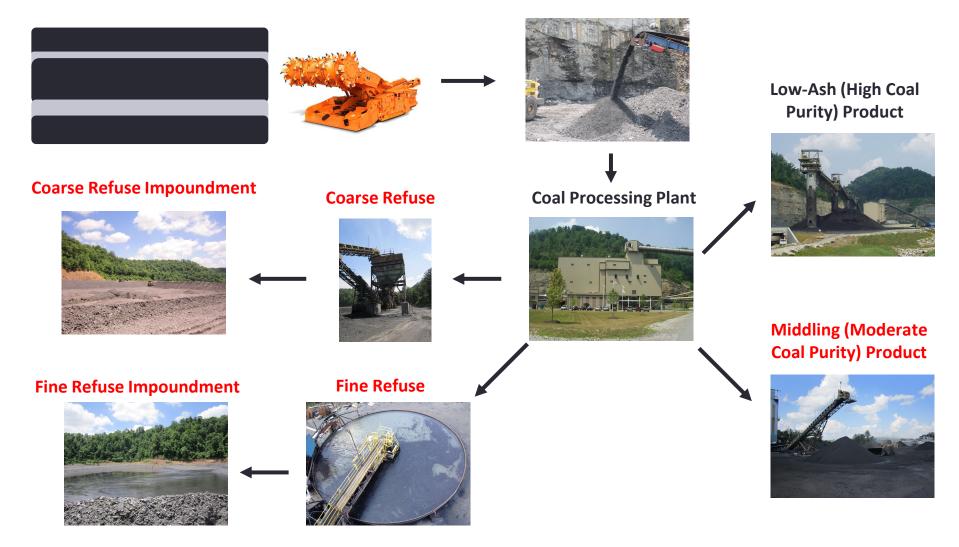


Project Flow Chart

Where are REE's in coal?



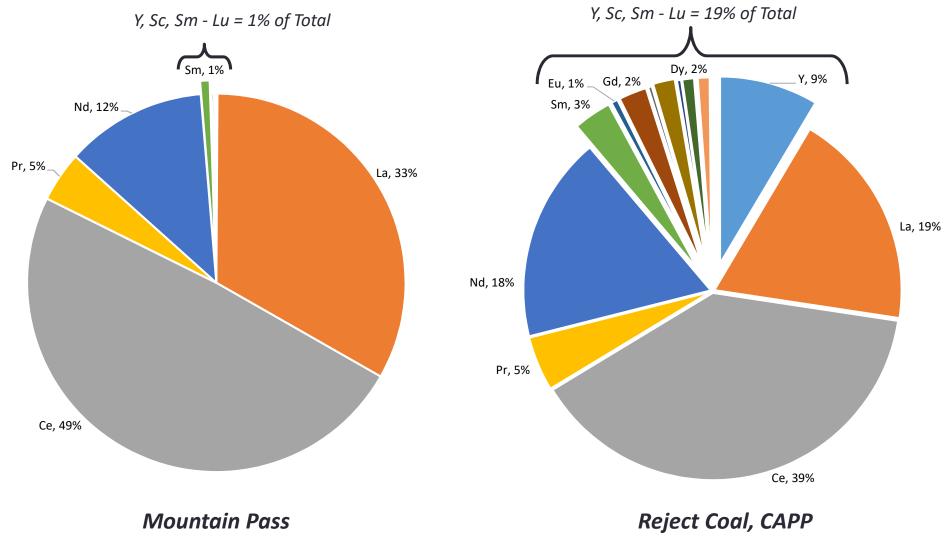
High Level Coal Mining & Processing Flowchart



Where can we target REE Recovery from Coal?

Project Specifics

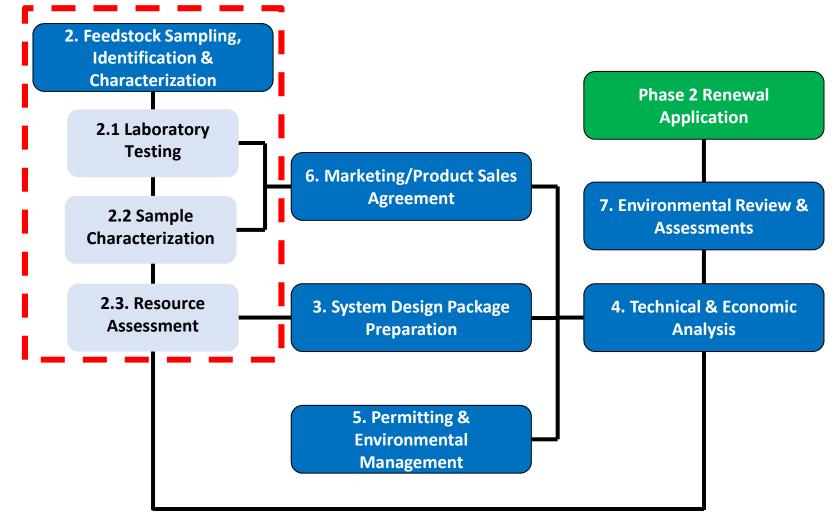
- > What are we doing? Conducting upfront engineering work associated with the design and permitting of a facility to produce 10 pounds per day of 90% pure rare earth oxides from coal/coal waste.
- > Where is the projected located? We are focused on Central Appalachian coal based feedstocks, including various product/refuse streams from preparation plants
- How are going about this? We will assessing the technical feasibility of the project through feedstock sampling, general site layouts/logistics and economics to determine the best site for Phase II, the construction/installation of the facility



3. REE Distribution

Likely Cost Profile of CAPP Met Coal Operation

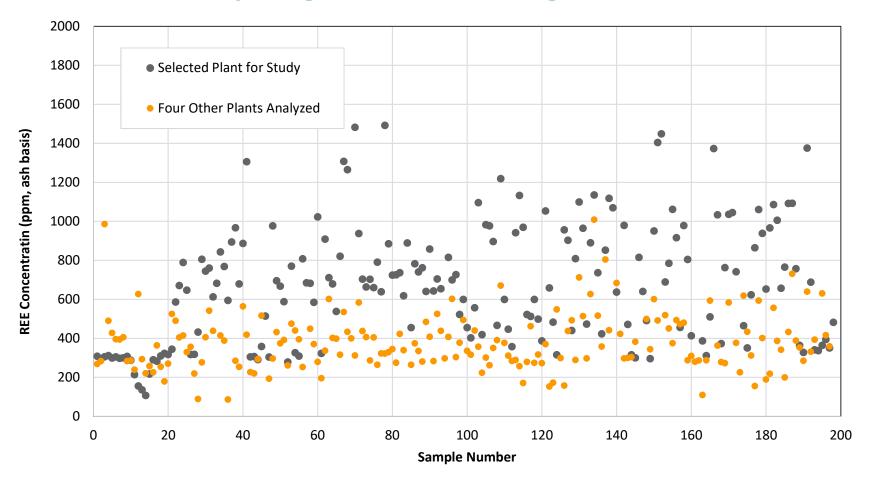
	pe	er Foot	per	Raw Ton	per	r Clean Ton		\$/Per Year
Direct Cash Mining Cost	-		1		-			••
Labor - Mine	\$	56.31	\$	10.34	\$	19.53	\$	22,540,000
Supplies - Excluding Roof Control	\$	10.00	\$	1.84	\$	3.47	\$	4,002,929
Supplies - Roof Control	\$	13.41	\$	2.46	\$	4.65	\$	5,368,735
Maintenance and Repair	\$	19.06	\$	3.50	\$	6.61	\$	7,628,413
Power	\$	5.44	\$	1.00	\$	1.89	\$	2,179,547
Other	\$	2.88	\$	0.53	\$	1.00	\$	1,154,196
Total - Direct Cash Mining Cost	\$	107.11	\$	19.67	\$	37.15	\$	42,873,820
Other Direct Cost								
Enviromental	\$	5.77	\$	1.06	\$	2.00	•	\$2,308,392
G&A	\$	5.77	\$	1.06	\$	2.00	•	\$2,308,392
Total - Other Direct Cost		11.53	\$	2.12	\$	4.00		\$4,616,785
Coal Preparation and Handling								
Coal Preparation Allocation	\$	19.06	\$	3.50	\$	6.61	•	\$7,628,413
Material Handling	\$	13.61	\$	2.50	\$	4.72	•	\$5,448,867
Total Coal Prep. And Handling	\$	32.67	\$	6.00	\$	11.33		\$13,077,280
Indirect Cash Cost								
Total - Indirect Cash Mining Cost	\$	33.04	\$	6.07	\$	11.46	•	\$13,227,088
Capitalization								
Depreciation of Major Mining Equipment	\$	17.30	\$	3.18	\$	6.00	•	\$6,925,177
Amortization of Development Capital	\$	0.36	\$	0.07	\$	0.12	•	\$143,239
Depreciation of Sustaining Capital	\$	8.65	\$	1.59	\$	3.00		\$3,462,588
Depletion	\$	-	\$	-	\$	-		\$C
Total - Capitalization	\$	26.31	\$	4.83	\$	9.12		\$10,531,004
Sale Price (Excluding Rare Earth)	\$	216.25	\$	39.72	\$	75.00	\$	86,564,711.28
Total Cash Mining Cost	\$	184.35	\$	33.86	\$	63.94	\$	73,794,973
Total Mining Cost Fully Loaded	\$	210.66	\$	38.69	\$	73.06	\$	84,325,977
EBITDA	\$	31.90	\$	5.86	\$	11.06	\$	12,769,738
LDIIDA	Τ		т		1 1			1 1

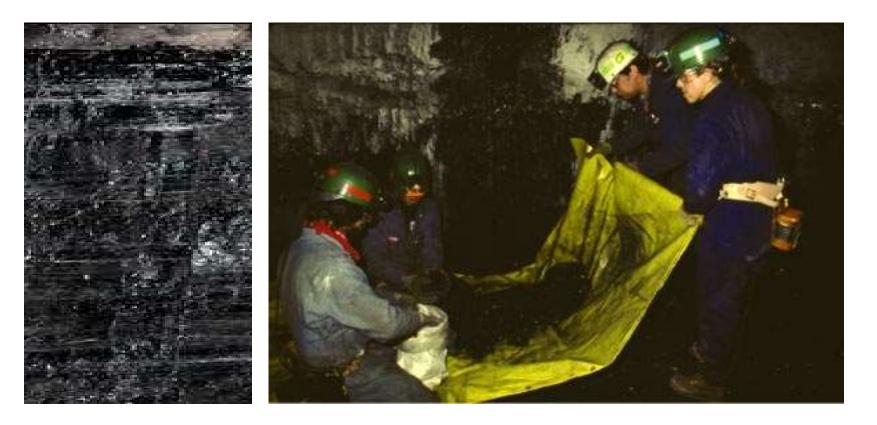


Task 2. Update

Characterization of the Resource

- Sample coal processing plant to determine potential product/refuse circuits containing REE's. Our team completed sampling at multiple CAPP plants which process coal from multiple coal beds ranging in depositional setting, age and coal rank.
- After determining if "hot" REE's exist in the plant, evaluate geological data to determine potential depositional sources and the long term forecast for potential REE production. Our team is nearing the completion of a resource/reserve evaluation to determine the long term potential of REE production.
- Determine recovery factors to assess how much of the resource can feasibility be recovered with novel separation technologies. Our team is running continuous tests on multiple coal/waste samples (multiple barrels of sample) to determine recovery factors for individual element constituents.





Results, Sampling of Processing Plants

Supplemental Channel Samples

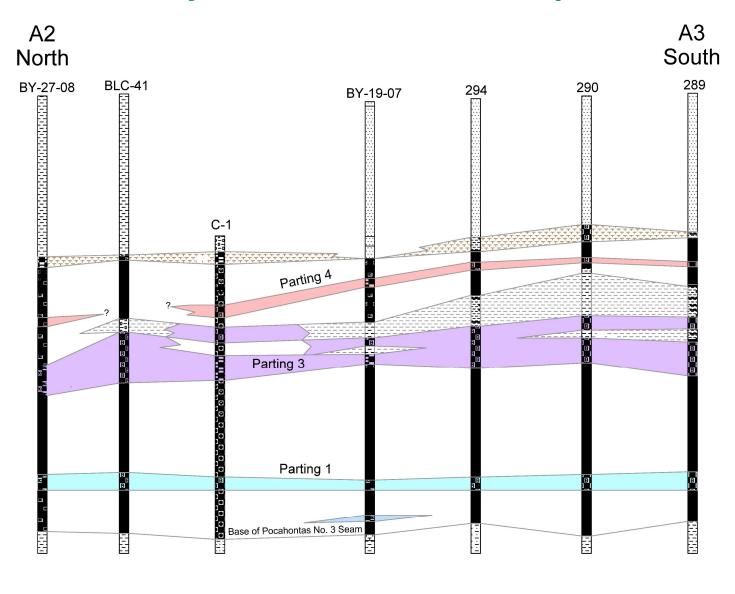
Slide 15

SK1 Steve Keim, 2/5/2018

Channel Sample 1 - Bulk Properties

			٦	Thickness			k Proper	ties	Mass	(%, dry)		
Sample	Lithology	CDMS	Indiv.	Cum.	Sample	Density	Density	Mass	All	In-Seam	Relative	Relative
ID	Description	Litho Code	(ft)	(ft)	(ft)	(SG)	(lb/ft3)	(lb/ft2)	Splits	Only	Thickness	Mass
Roof	Shale/Drk Gray/Hard	SHDK	0.25	0.25	0.25	2.18	136.2	34.0	5.2			
1	Bone w/ Coal Streaks	BOWCOK	0.20	0.45	0.20	1.81	112.8	22.6	3.5	5.3	Winininini	ر المراحد العلمي (
2	Clarain w/ Vitrain Layers	COCLAR	0.37	0.82	0.37	1.40	87.6	32.4	5.0	7.6		1111
3	Coal w/Thick Pyrite Layer	COWPY	0.06	0.88	0.27	1.35	84.4	22.8	3.5	5.4		ш
, v	Vitrain w/ Fusain Streaks	COBRT	0.21	1.09	0.27	1.00	04.4	22.0	0.0	0.4		
	Bone w/ Coal Streaks	BO	0.20	1.29								
4	Vitrain	COBRT	0.15	1.44	0.80	1.56	97.5	78.0	12.0	18.4		
- T	Bone	BO	0.25	1.69	0.00	1.50	31.5	10.0	12.0	10.4		
	Vitrain w/ Bone Streaks	COBRT	0.20	1.89	0.80							
	Bone w/ Coal Streaks	BOWCOK	0.40	2.29								
5	Clarain w/ Vitrain Streaks	COCLAR	0.60	2.89	1.93	1.52	94.9	183.2	28.1	43.1		
	Vitrain w/ Fusain Streaks	COBRT	0.93	3.82]							
6	Bone	BO	0.21	4.03	0.21	1.61	100.2	21.0	3.2	5.0	Ш	11 .
7	Vitrain	COBRT	0.78	4.81	0.78	1.33	83.1	64.8	9.9	15.3		
Floor	Siltstone/Very Hard	SI	1.50	6.31	1.50	2.07	128.9	193.3	29.6	-		
Sample	All Strata		6.31		6.31			652.2	100.0	100.0		
Coal	Coal (No Roof & Floor)		4.56		4.56			424.8	65.1	100.0		
Rock	Rock (Roof & Floor)		1.75		1.75			227.4	34.9	0.0		

Channel Sample 1 - Bulk Properties


Sample	Lithology	Mass	Ash	Concent	ration (p	pm, who	le-basis)	Concer	ntration (opm, ash	n-basis)	Co	ncentra	tion Rat	ios
ID	Description	(%, dry)	(%, dry)	TREE	LREE	HREE	CREE	TREE	LREE	HREE	CREE	L/T	H/T	C/T	H/L
Roof	Shale/Drk Gray/Hard	5.2	80.86	166.8	126.1	40.7	53.4	206.3	155.9	50.4	66.0	0.76	0.24	0.32	0.32
1	Bone w/ Coal Streaks	3.5	48.27	218.4	184.4	34.0	57.9	452.4	382.0	70.4	120.0	0.84	0.16	0.27	0.18
2	Clarain w/ Vitrain Layers	5.0	13.20	75.6	60.8	14.7	21.5	572.5	460.9	111.6	162.5	0.81	0.19	0.28	0.24
3	Coal w/Thick Pyrite Layer	3.5	8.82	62.8	48.7	14.1	19.3	712.2	552.0	160.2	219.3	0.78	0.22	0.31	0.29
	Vitrain w/ Fusain Streaks	0.0	0.02	02.0	40.7	14.1	13.5	112.2	552.0	100.2	213.5	0.70	0.22	0.01	0.23
	Bone w/ Coal Streaks				125.9	25.0				92.9	154.0				
4	Vitrain	12.0	26.95	151.0			41.5	560.2	467.3			0.83	0.17	0.27	0.20
	Bone	12.0		131.0	120.0	20.0	41.0	500.2	+07.0			0.00	0.17	0.21	0.20
	Vitrain w/ Bone Streaks														
	Bone w/ Coal Streaks														
5	Clarain w/ Vitrain Streaks	28.1	23.38	157.9	130.9	27.0	44.1	675.2	559.8	115.4	188.5	0.83	0.17	0.28	0.21
	Vitrain w/ Fusain Streaks														
6	Bone	3.2	30.75	370.4	311.2	59.2	100.5	1204.5	1012.1	192.4	326.9	0.84	0.16	0.27	0.19
7	Vitrain	9.9	6.93	69.4	46.0	23.4	27.9	1001.0	663.6	337.4	403.1	0.66	0.34	0.40	0.51
Floor	Siltstone/Very Hard	29.6	70.68	287.0	243.7	43.3	82.7	406.1	344.8	61.3	117.1	0.85	0.15	0.29	0.18
Sample	All Strata	100.0	39.28	188.5	156.4	32.2	54.4	480.0	398.1	81.9	138.6	0.83	0.17	0.29	0.21
Coal	Coal (No Roof & Floor)	65.1	21.65	145.5	119.0	26.4	41.6	671.8	549.7	122.0	192.2	0.82	0.18	0.29	0.22
Rock	Rock (Roof & Floor)	34.9	72.20	269.0	226.1	42.9	78.3	372.6	313.1	59.5	108.5	0.84	0.16	0.29	0.19

LREE = La, Ce, Pr, Nd, Pn

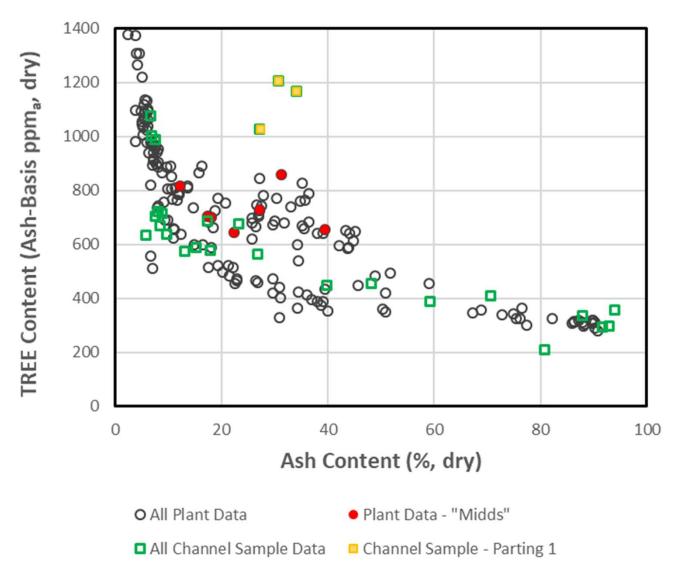
HREE = Gd, Tb, Dy, Ho, E CREE = Y, Nd, Eu, Tb, Dy



Resource Study Cross Section Example

ARSHALLNILLER &ASSOCINES®

Channel Sample Comparison—Parting 1

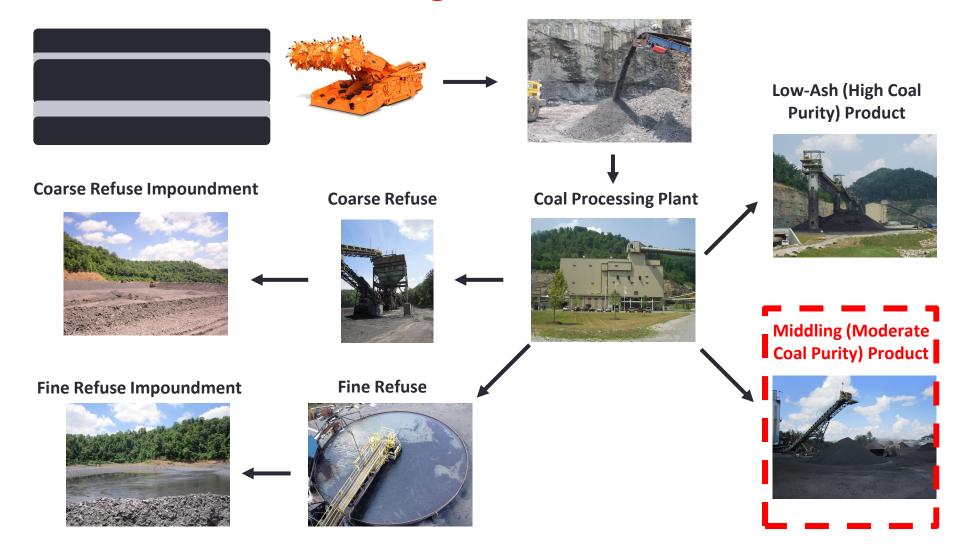

Parting 1, REE, Ash Basis

HREE

CREE

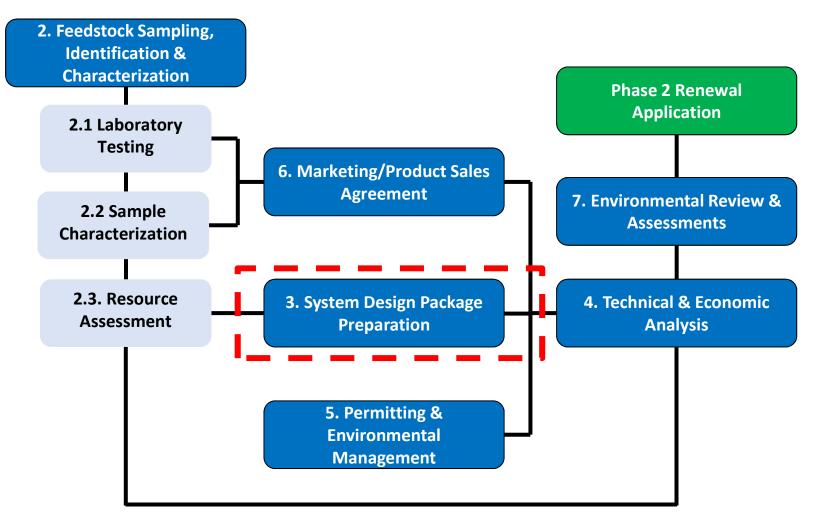
Channel Samples & Plant Samples

NARSHALLNNILLER

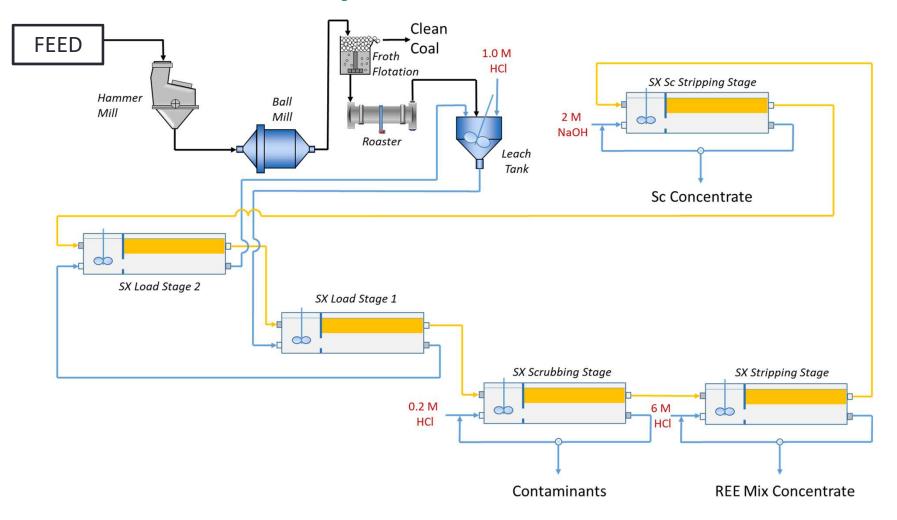


Where are we focusing our efforts?

Middling Product—Reduce Size and Subdivide into High Purity Coal & REE Rich Feedstock



REE Processing Design Update

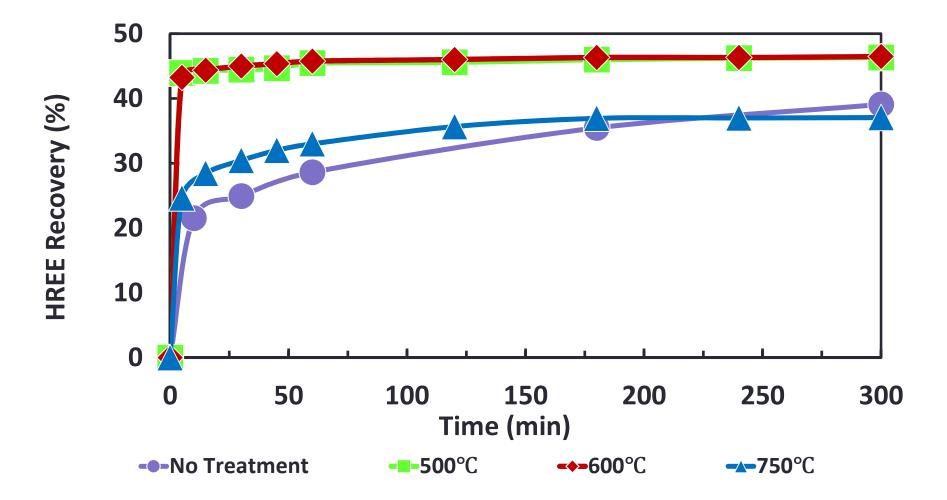


Flowsheet Development

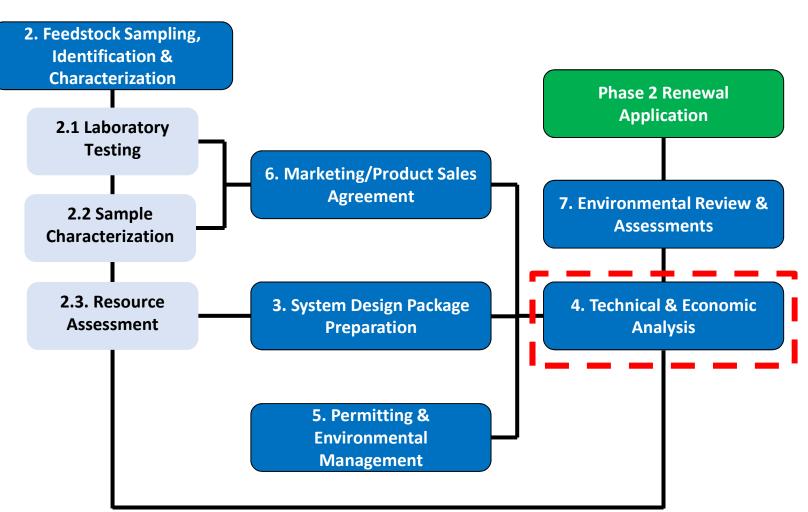
Solvent Extraction Unit – University of Kentucky

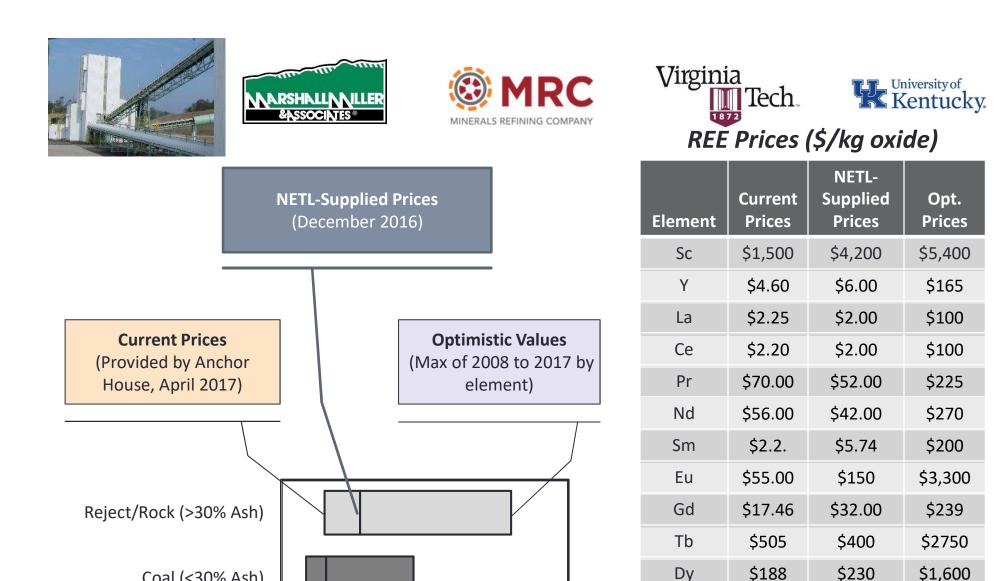
Ongoing Laboratory Tests—REE Extraction

- > <u>Leaching.</u> Currently evaluating the effectiveness of various acids, strengths, leaching times, leaching temperature.
 - Initial leaching testing suggests difficult leachability for most REE's with recoveries <50%. Additional pre-treatment tests are underway to increase REE leachability
- > <u>**Roasting.</u>** Currently evaluating the effectiveness of roasting to oxidize REE's and increase leachability.</u>
 - > Initial testing shows that some REE recoveries are significantly increased through roasting. Additional tests are underway.
- > **Solvent Extraction.** Solvent extraction tests on leachate material have shown very favorable REE recoveries.
 - > Ability to recycle acid has also been proven, significantly decreasing operating costs associated with solvent extraction process.
- > <u>Summary: High recovery leachate production in the current challenge.</u>



Effect of Roasting Temperature on REE Leachate Recovery





Task 2. Update

Ho

Er

Tm

Yb

Lu

--

\$26.30

--

--

--

--

\$34.00

--

--

--

\$750

\$255

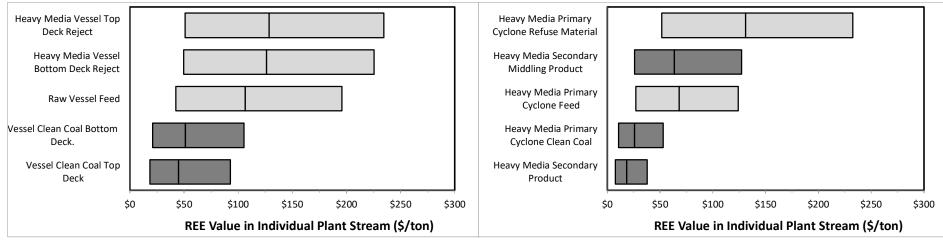
\$2,500

\$450

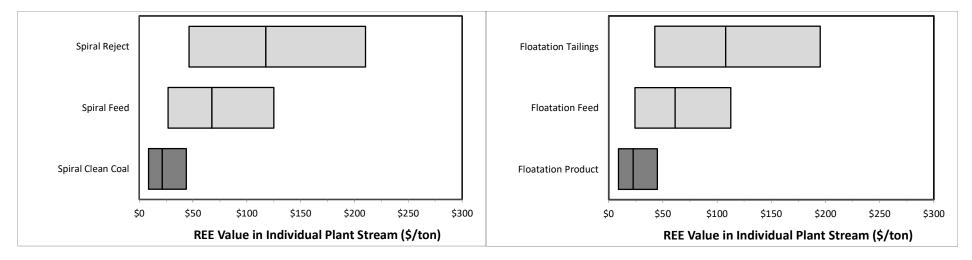
\$4,000

Coal (<30% Ash)

REE Value in Individual Stream (\$/ton)



Contained Value of REEs in Plant Products


Vessel Circuit

Cyclone Circuit

Spiral Circuit

Flotation Circuit

High-Level Comments on Economics

- > Scandium represents ~90% of the value of the resource
- Estimated value per ton of high REE parting is in the range of ~\$20-\$30. Note—this is a "contained" value estimate and does not account for recovery & dilution.
- > Assuming that 75% of the high REE parting reports to middling circuit, anticipated contained value in the targeted plant circuit is in the range of ~\$15-\$23 per ton.
- > <u>Through decarbonization, the anticipated contained value of the REE feed</u> is in the range of \$40-\$70/ton.
 - > <u>Recovery factors associated with REE processing are still being</u> <u>analyzed for leachate generation and could range from 30% to 90%.</u> <u>As such, the value of a product could range from \$12 to \$60 per raw</u> <u>ton of feed.</u>
- > Operating costs associated with REE processing need to be well below the above estimated value of \$12 to \$60 per raw ton.
 - > Costs will include leachate preparation, leaching, solvent extraction, and refuse disposal.

Summary & Conclusions

- > The project team has sampled multiple preparation plants and identified a middling/moderate-ash coal product as a potential feedstock for REE recovery
- > Through analysis of exploration drilling data & channel samples, the team has determined that the REE concentrations will maintain a consistent level in the middling product throughout the life of the coal mine
- > A project partner can decarbonize the feedstock, and effectively upgrade the coal portion of the product to a higher value and concentrate the REE feedstock
- Regarding processing of the REE's, the team is currently assessing ways to boost recovery during leachate production. Recovery during solvent extraction steps is very strong. High recovery of REE's is crucial to offset operating costs and to allow ample production volumes of REE's.

Questions?

