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Project Objectives

The primary objective of this program is to develop a
physically based creep model

for Nimonic 263 that synthesizes known creep behavior based on gamma

prime strengthening with a
new understanding of the effects of eta phase

on creep performance at long service times in fossil energy power plants.
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1. Background
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Background — Nimonic 263

Nickel-base Superalloy

Excellent corrosion/oxidation resistance

Good creep performance

Easy to form and weld (Low volume fraction of y’)

Candidate material for A-USC piping and other
components

Ni Co Cr Al Ti Mo Fe Mn Si C

48 20 20 0.60 2 6 0.70 0.60 0.40 0.06
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Background — Nimonic 263

Over long service life and at high temperatures, n phase is known to form at the

expense of y’ phase

Previous creep studies on Nimonic 263 and similar alloys have shown growth of n

phase during the course of creep tests
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Eta Phase evolution

¢ Gamma Prime Particles
e Start of Eta Phase at Grain
Boundary

Inconel 740 750°C
[Shingledecker and Pharr 2012]
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Nimonic 263 Evolution

T>700°C

[
»

Long Service Time

« Niy(Al Ti) N Phase
* L1, Structure * NigTi
° Spherical ° D024 Structure

Plate/Needle like

e Principal Strengthening Phase .
Forms at the expense of y
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Conflicting Reports from Literature about n Phase

Nimonic 263 [Zhang 2002] 800 °C
Nimonic 263 [Zhao 2002] 816-840 °C
Inconel 740 [Zhao 2003] 750-850 °C
Inconel 740 [Evans 2004] 816 °C

Inconel 740 [Shingledecker 2012] 750 °C
Inconel 740 [Shingledecker 2013] 750-850 °C
Inconel 740 [Unocic 2014] 750 °C

4 Michigan Technological University
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Reduces creep ductility; cavity nucleation and
microcracking; avoid near grain boundary

Claim detrimental to strength and ductility

Presence at grain boundaries reduced impact toughness

Reduce y’ strengthening/limit grain boundary ductility

Not detrimental to creep; formation kinetics faster under
stress

Reduced creep rupture ductility above 7 vol% eta

Not detrimental to creep
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2. Problem Statement

n phase will form in A-USC components in service

There is no agreement in the literature about whether | phase

is detrimental to creep performance

There has been no research about how 1n phase might affect

constitutive behavior (creep rates), and therefore life prediction

N phase might also affect cavitation behavior
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3. Experimental Approach

Want to isolate effects of n phase on Creep performance

Compare creep performance and deformation mechanism of three materials:

Material 1 (y’ only) - Standard Commercial Nimonic 263 containing only y’

Material 2 (n only) - A modified Michigan Tech alloy based on Nimonic 263

that contains no y’, only n

Material 3 (y’ + n) - Standard Commercial Nimonic 263 that has been heat

treated prior to creep test to contain both " and n

Michigan Technological University EPR | @ENERGY | [T



Material 1: Nimonic 263 - y’ only

Widely studied

Creep data available from an earlier

research carried out by EPRI

CREEP STRAIN (%)

Crept specimens from EPRI available for

deformation studies
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Rupture: 3013.1h

Elongation: 4.2%
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Material 2: Modified Nimonic 263 based alloy - n only

Earlier Research — Goal to design alloys containing only n and no y’

DOE Approach utilizing Thermocalc was used with Nimonic 263 as starting point

Out of 32 combinations, 3 alloys were produced and fabricated

Lower Al, Mo and higher Ti, Nb, Ta and W (than N263) formed essentially only n and no y’
Creep rupture tests were conducted from 700 °C — 850 °C

Larson Miller Parameter was plotted against rupture strength, and deformation

mechanisms were determined
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Modlfled Michigan Tech n Alloy

047 199 198 040 039 593 0.01 Bal 0 2.10 0.01 0.16 0.06

I/A‘ 0.14 20.7 208 048 042 001 192 Bal 1.09 275 0385 1.94 0.07

ACMAL 10.0kV 13.4mm x20.0k SE(M)
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Big Picture

Material 1 Material 2
Microstructure ;
All All
Target 4 L
Thermal ) Heat treat to
. Commercial
Processing form n
Cree!o Data J J
available
Crept '
rept Specimen J J

Available?

Michigan Technological University =rr2l \ ESEARCH

Material 3

Y’ + n prior to creep
test

This Project



Overview: Material 3 ( Nimonic 263 y’ +n)

Develop Heat treatment for Standard Commercial Nimonic 263 to contain y’ and n prior

to creep test

Study Creep Deformation and Failure mechanisms in:

This material, containing ¥’ and n prior to creep test
Standard Nimonic 263 containing only y’ prior to creep test
The alloy containing only n

Modify existing creep models to incorporate deformation mechanisms of all three

materials
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4. Results

Finished heat treatments for Material 3 (Nimonic 263 heat treated to contain y’ + n)

Heat treated samples were studied with SEM to obtain volume fractions of y"and n, as

well as the particle size of ¥’

Results were validated with literature values, ThermoCalc predictions
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Typical Aged Nimonic 263 - y’ and n Micrographs

o
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Material 3: Heat treated Nimonic 263 - n Volume Fraction

Eta Volume Fraction vs Time
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Material 3: Heat treated Nimonic 263 — y’ Particle Coarsening

Gamma Prime Particle Diameter vs Time
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Creep Models for ¥’ alloys such as IN740, Haynes 282 and N263

Substantial prior research has been conducted by many

Prediction 15ksi
Prediction 17 5ksi
Prediction 27 5Ksi

investigators to develop physically-informed creep models

Prediction 32 5Ksi
for these types of alloys. (Dyson et al., many others) Predicton 35Ksi
Prediction 37 5Ksi
O  Experiment 15ksi

] Expernimen it 17 Sksi

Strain [in/in]

DOE-sponsored research by Shen Chen and his team at GE

Experiment 27 5Ksi
O Experiment 32 5Ksi

Experiment 35Ksi

Global Research resulted in an outstanding model that

Experiment 37 5Ksi

0 ZUIOO 40I00 60I00 SOI(JO 10600 12000
worked very well for Haynes 282 Time [h]

Shen Chen 2014
DE-FEO005859 and DE-FE0024027
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Creep Models for ¥’ alloys such as IN740, Haynes 282 and N263

Chen implemented a Dyson-type model in Matlab for Haynes 282.

These models include microstructural parameters such as y’ size and volume fraction,

APB energy, y’ coarsening in service, diffusional parameters, etc.

The output of the code is plot of creep strain vs time for given input temperature,
stresses, variables and precipitate coarsening data over time. Includes cavitation and

failure.

Chen gave us his code, and this will be the starting point for our modelling efforts
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Creep Deformation Mechanisms in Shen Model

Precipitate Shearing L .

Dislocation Climb with precipitate by-pass

—_—

Diffusional Creep (grain boundary and bulk)
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Creep Model for y’

gcreep  — gdislocation 4 Ediffusion

Edislocation — Eclimb + Eshearing

¢ diffusion — élattice_diff+ éboundary_diff+ écavity_boundary_diff+ écavity_surface_diff
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Dislocation Creep Model for y’

/A 0, — Op — O
gaistoc — JPAF(1—f) ’ﬁ_l sinh (C efkaBT ° b%R) if Oprf — 05 — 05 > 0
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Dislocation Creep Model for y’

é diffusion — élattice_diff+ E’boundary_diff + E’cavity_boundary_diff_l_ E’cavity_surface_diff

glattice_diff — fﬁ O-applied( 1+ gcreep)

3
, . 1
Eboundary_dn‘f = 37 f (E) O-applied( 1+ gcreep)

gcavity_boundary_diff — E 1 Oapplied
dIn(= L
Wpoundary dif f

geavity_surface_diff — fa \/wsurface daif f - 0_2 lied
~ a e
(1_wsurface diff) pp

Michigan Technological University el | wano, @ENERGY | [T



Code development, this project

Chen’s model is specific to Haynes 282. Material parameters are hard-coded into
the Matlab files. Precipitate coarsening is handled by a look-up table and

interpolation.

To make the code usable for new alloys, and to make it easier to use, we have:

Implemented a GUI that allows the user to enter and quickly change all the
important variables in an intuitive interface.

Changed the code to allow input of an LSW precipitate coarsening model in the
GUIl instead of hard-coded look-up tables.
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8
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Loop 1:

MATLAB Flowchart
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5. Conclusion

Isolate effects of n in creep properties of Nimonic 263

We have the data for Nimonic 263 with ' and n, We have the preliminary Creep Model,

now we combine

¥’ + n phase: Will decide 2 heat treatments for Creep tests, this quarter

Over next year:
Study Creep Deformation and Failure Mechanisms with TEM

Modify preliminary MATLAB model to include studies on ‘all ', ‘alln” and ‘y" + n’

materials
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Milestones

Planned

Milestone Title/Description Completion
Date

2.0 Develop heat treatments to form ¥’ and 7 phases in Nimonic 263 prior to creep testing 1/31/2017

2.1 Mine existing data from the literature. If insufficient, conduct simulations with Thermo-Calc and
kinetics software to predict 7 phase formation in reasonable amounts of time for new material. Establish 11/30/2016
best route to form ' such that y’ structure is as close to standard Nimonic 263 as possible.

2.2 Validate predictions in (2.1) experimentally, and adjust as needed. 1/31/2017

Critical Decision Point. Is it possible to produce a suitable y’ +  microstructure via a relatively short time (<
1,000 hour) heat treatment? If yes, continue. If not, see Section B, Risk Management, for mitigation 1/31/2017
strategies.

3.0 Conduct creep tests at EPRI on new Nimonic 263 that had been modified to contain both y' and 7
phases.

8/31/2018

Actual
Completion
Date

3/1/2018

3/1/2018

95%

12/22/2017

20%
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Milestones

Planned Actual

Milestone Title/Description Completion Completion
Date Date

4.0 Assess microstructures as well as deformation and damage mechanisms in all three microstructural 2/28/2019 15%
conditions (100% y’, 100% 7, mixture of y' +1.) °

4.1 Conduct optical, SEM and TEM microscopy to quantify phase transformations, precipitate size evolution,
. . . 10/31/2018 10%
deformation mechanisms (TEM), and damage evolution.

4.2 Establish effects of microstructure on deformation mechanisms in all three microstructures 1/31/2019 0%

4.3 Use results of (4.1) and (4.2) to quantify the effects of 7 on creep performance of Nimonic 263. 2/28/2019 0%

5.0 Modify existing y’ based creep models to account explicitly for the effects of 77 phase as determined in (4.) 8/31/2019 35%

5.1 Assess and integrate best damage models from the literature 2/28/2019 50%

5.2 Adapt models to explicitly include the transformation from metastable y’ to equilibrium 7 and resultant
. . 6/30/2019 0%
changes in damage mechanisms

5.3 Validate model with select creep experiments 8/31/2019 0%
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