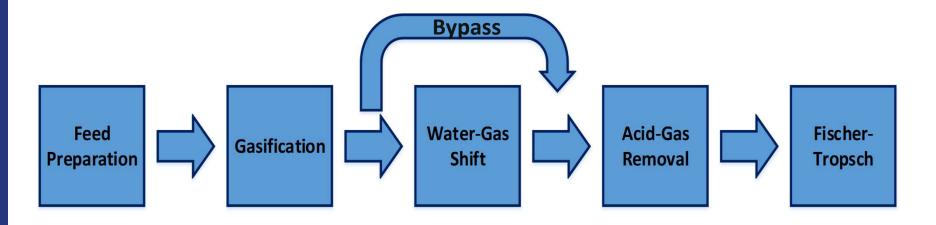
Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels via Fischer-Tropsch Synthesis

DOE Project Number: FE0010482


Andy Placido

University of Kentucky, Center for Applied Energy Research http://www.caer.uky.edu/powergen/home.shtml

2018 Gasification Systems and (C&CBTL) Project Review Meeting

Project Objectives and Overview

- Design, construction and operation of integrated coal/biomass-to-liquids (CBTL) facility at a capacity of 1 bbl./day
- Produce liquid fuels from coal only and coal/biomass blend for limiting CO₂ emissions
- Purposely designed for maximum flexibility: modular, skid-mounted, anticipating frequent changeouts; "plug and play;" and future re-purposing

2018 Gasification Systems and (C&CBTL) Project Review Meeting

Technology Selection, Design and Fabrication

Work included process selection, design, fabrication, installation, commissioning and testing

Gasifier – OMB Technology

- Reliability
- Flexibility multiple
 burners and wide range
 of feedstocks
- Arrived December 2013

AGR – Aqueous Amine

- Familiarity Previous operation experience
- Sulfur removal
- Arrived December 2014

WGS and FT

- Commercial sour shift catalyst (sulfur promoted)
- Microchannel reactor
- Easy to control
- Ease of product separation
- Arrived February 2017

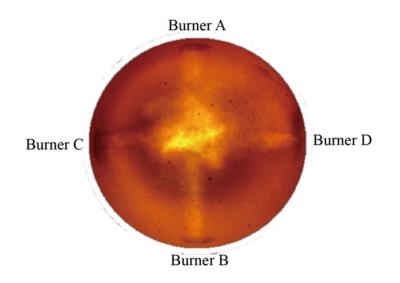
Installation and Operation

2018 Gasification Systems and (C&CBTL) Project Review Meeting

On-site Hydromill Feed Preparation

 Ash fusion temperature generally limiting factor of feed

- Important Final
 Slurry Properties
 - Particle size
 - Viscosity


Average particle size	Mass	Viscosity (mPa·s)	
(µm)	concentration		
<50	<60%	<250	

2018 Gasification Systems and (C&CBTL) Project Review Meeting

Multiple Burner Gasification System

- Entrained flow gasifier
 - Coal/water slurry
 - Oxygen blown
 - Molten slag
 - 1 ton/day coal consumption
- Industrial process technology
- Co-feed (coal, biomass and natural gas)

Aqueous-based Acid Gas Removal

Aqueous Solvent System

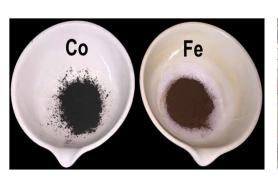
- CAER has 10+ years Experience with Similar Technology
- Thermal and Pressure Swing Absorption
- Howden Burton Corblin metal diaphragm compressor
 - Pressures up to 450 psi
- Wide range of Amine Solvents
- Sulfur Treatment on Both Rejected Acid Gas and Treated Gas
 - Activated carbon

Process Guarantees:

- 95+% removal of CO₂
- 99.99% removal of sulfur (less than 1ppm)

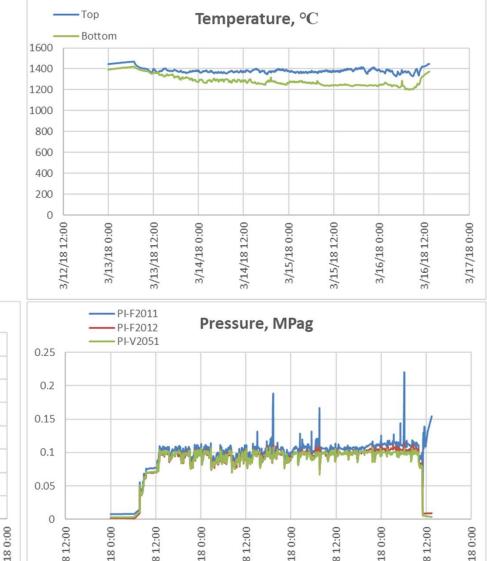
2018 Gasification Systems and (C&CBTL) Project Review Meeting

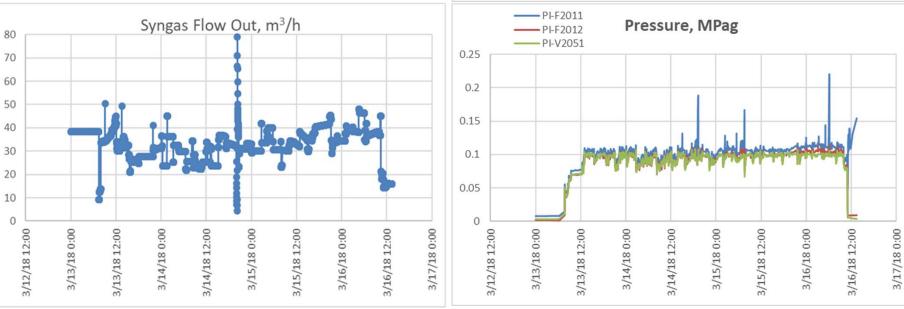
WGS and Microchannel FT Reactor



- WGS is packed bed reactor with commercial sour shift catalyst (sulfur promoted/tolerant, Cobalt and Molybdenum based)
- FT Reactor is aluminum heat exchanger inside a steel kettle
- Utilizes a specialty high pressure oil coolant system to maintain reactor T
- Capable of utilizing either Fe or Co based catalysts
 - Difference in feed H₂/CO molar ratio
- 20.6 lbs of 0.1%Pt-20%Co/Al₂O₃ catalyst loaded
- Product separation:
 - Hot trap at 140C
 - Cold trap at 5C
- Water Gas Shift and FT modules were designed and built by Zeton Inc. with assistance from Stovlbaek Consulting

caer.uky.edu

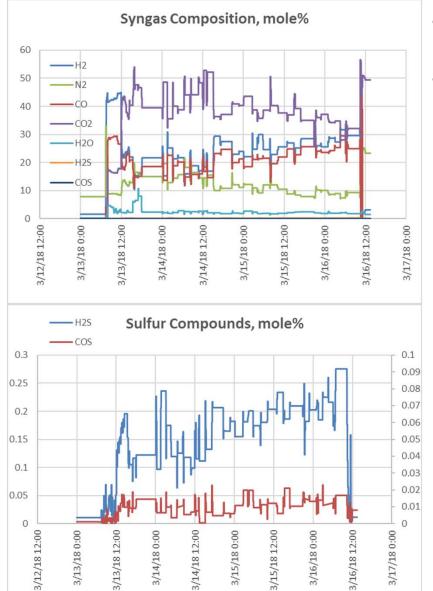


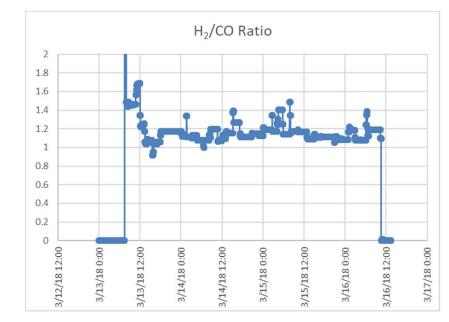


2018 Gasification Systems and (C&CBTL) Project Review Meeting

Gasifier - Operation Data from Coal Operation

- Full facility operation
- 1 week operational period
- Operationally stable for entire testing run
- Feed details
 - 60% solids/40% water

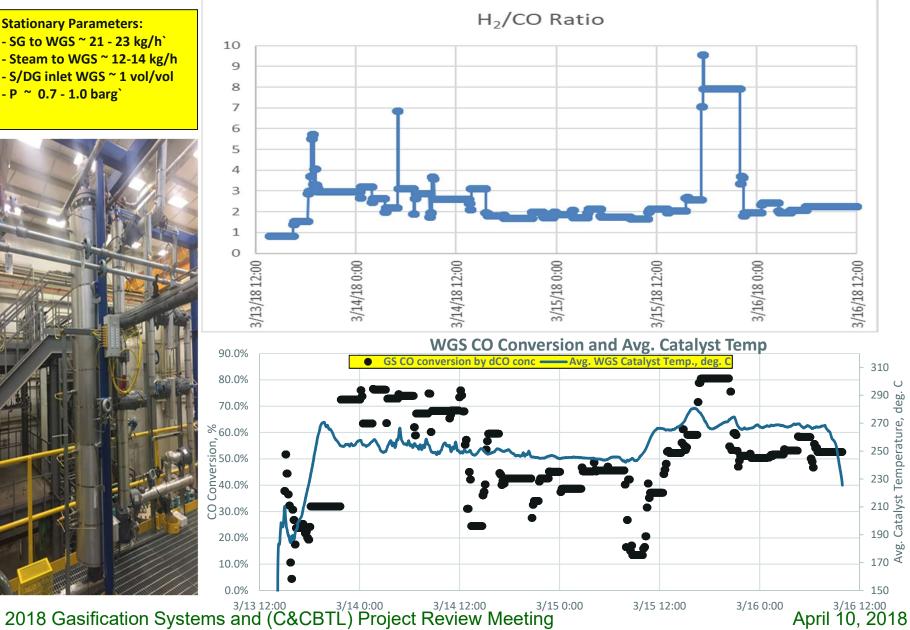



2018 Gasification Systems and (C&CBTL) Project Review Meeting

April 10, 2018

Gasifier – Operation Data

- Syngas quality stable during full run
- H₂/CO important syngas quality measure for downstream utilization
 - Ratio stable around 1.1 to WGS unit

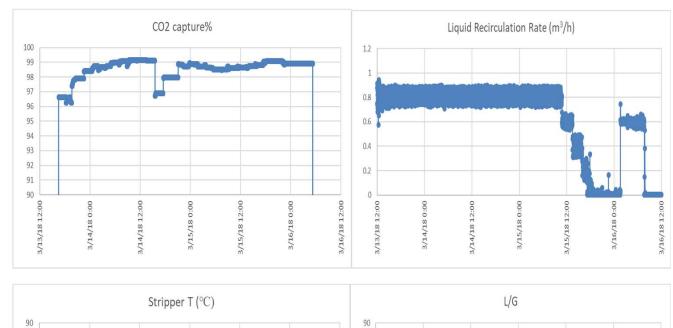


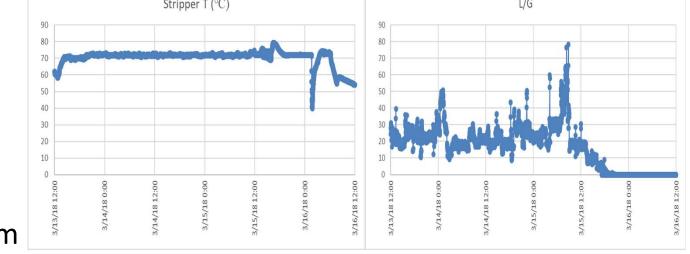
2018 Gasification Systems and (C&CBTL) Project Review Meeting

April 10, 2018

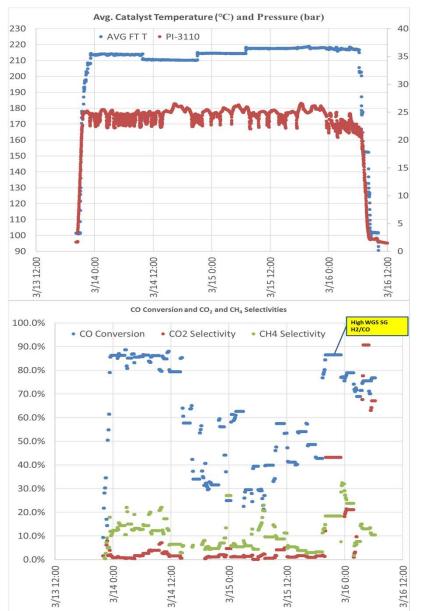
WGS – Operation Data

Stationary Parameters: - SG to WGS ~ 21 - 23 kg/h` - Steam to WGS ~ 12-14 kg/h - S/DG inlet WGS ~ 1 vol/vol - P ~ 0.7 - 1.0 barg`




We Center for Applied Energy Research

Acid Gas Removal – Operation Data


<u>Aqueous Solvent</u> System

- GC for syngas composition
- Draeger Tubes for sulfur measurement at low concentrations
- CO₂ removal at 98%+
- Sulfur removal to below 0.2ppm

FT – Operation Data

- Practically limited by flow through FT reactor Bed
 - Higher pressure drop than anticipated
 - Different than lab reactor
 - Flow less than design(22 kg/hr)
- Stable
 - Operating T: 210-220C
 - Operating P: 24 bar (~350psi)
- Reactor Temperature and H₂/CO ratio used to control product and conversion
 - Higher T = higher conversion
 - Higher H₂/CO ratio at inlet = higher conversion
- Conversion varied between 30-85% based on testing conditions

2018 Gasification Systems and (C&CBTL) Project Review Meeting

April 10, 2018

FT – Final Products from Coal

55 operating hours

<u>Yields:</u> Wax: 27.25kg Oil: 31.25 kg water: 57.50kg

Wax

2018 Gasification Systems and (C&CBTL) Project Review Meeting

Water

April 10, 2018

FT – Product Composition

<u>Wax</u>

<u>Oil</u>

<u></u>			<u></u>			
Component	Area %	<u>Component</u>	<u>Area %</u>	Component	Area %	
C8 alkane	9.86	C14 alkane	1.00	C33 alkane	2.61	
		C15 alkane	2.19	C34 alkane	2.34	
C9 alkane	13.55	C16 alkane	1.75	C35 alkane	2.31	
C10 alkane	13.88	C17 alkane	2.79	C36 alkane	2.00	
C11 alkane	12.55	C18 alkane	3.21	C37 alkane	1.78	
		C19 alkane	3.46	C38 alkane	1.57	
C12 alkane	11.45	C20 alkane	3.39	C39 alkane	1.38	
C13 alkane	9.86	C21 alkane	3.36	C40 alkane	1.21	
C14 alkane	8.02	C22 alkane	3.34	C41 alkane	1.04	
		C23 alkane	3.37	C42 alkane C43 alkane	0.94 0.82	
C15 alkane	6.12	C24 alkane	3.56	C43 alkane	0.82	
C16 alkane	4.50	C25 alkane	3.77 4.28	C45 alkane	0.63	
C17 alkane	3.15	C26 alkane C27 branched alkanes	4.28 1.13	C46 alkane	0.68	
		C27 branched alkanes	1.13	C47 alkane	0.52	
C18 alkane	2.15	C27 branched alkanes	1.47	C48 alkane	0.50	
C19 alkane	1.45	C27 branched alkanes	2.20	C49 alkane	0.40	
C20 alkane	0.97	C27 alkane	5.32	C50 alkane	0.32	
C21 alkane	0.68	C28 branched alkanes	1.89	C51 alkane	0.30	
		C28 branched alkanes	0.93	C52 alkane	0.21	
C22 alkane	0.49	C28 branched alkanes	6.00	C53 alkane	0.20	
C23 alkane	0.39	C28 alkane	4.04	C54 alkane	0.15	
C24 alkane	0.27	C29 alkane	3.66	C55 alkane	0.14	
		C30 alkane	3.24	C56 alkane	0.08	
C25 alkane	0.21	C31 alkane	3.08	C57 alkane	0.13	
C26 alkane	0.16	C32 alkane	2.82	C58 alkane	0.07	
C27 alkane	0.28			C59 alkane	0.10	

2018 Gasification Systems and (C&CBTL) Project Review Meeting

Summary

Project successfully completed

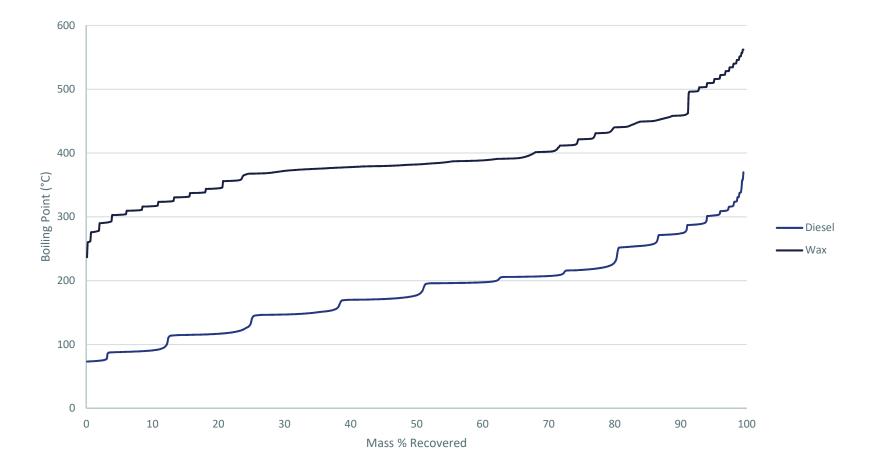
Full facility is now operational for any demands
 Scheduled to host multiple vendors for CTL and gas separation development

>Leveraging CTL facility for small modular gasification

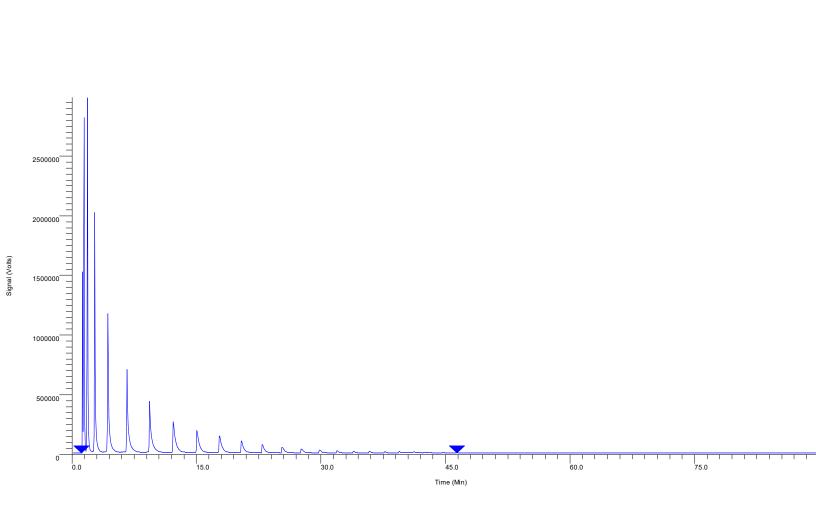
2018 Gasification Systems and (C&CBTL) Project Review Meeting

Acknowledgements

- > DOE-NETL: Arun Bose, Jenny Tennant, David Lyons, and Jason Hissam
- UK: Rodney Andrews, Don Challman, Kunlei Liu, Steve Summers, Tate Van Hoose, Len Goodpaster, Otto Hoffman, Jake Brumback, Marshall Marcum, Brad Irvin, and Jonathan Pelgen
- ECUST: Qinghua Guo, Yan Gong, Jianliang Xu
- Stovlbaek Consulting: Peter Pedersen
- > Zeton: Ravin Dave and Danielle De Sousa
- ➢ CEEDI: Wang Qiuming and Tao Li



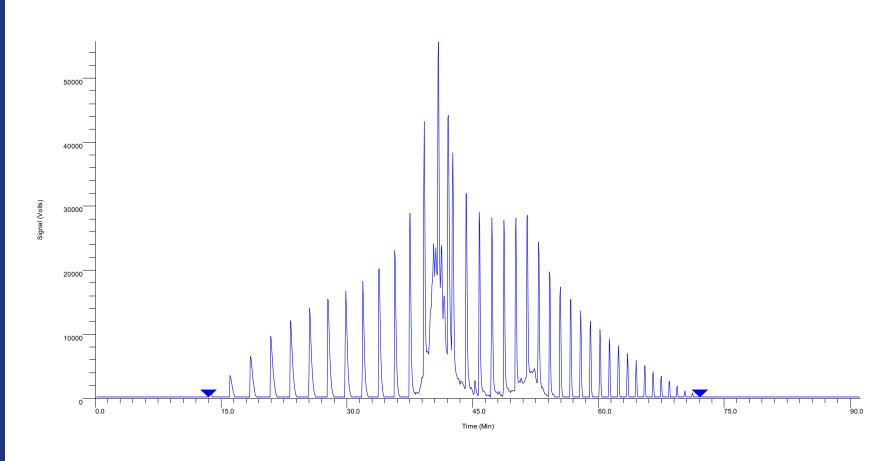
2018 Gasification Systems and (C&CBTL) Project Review Meeting


Extra Slides

2018 Gasification Systems and (C&CBTL) Project Review Meeting

Boiling Point Distribution Plot

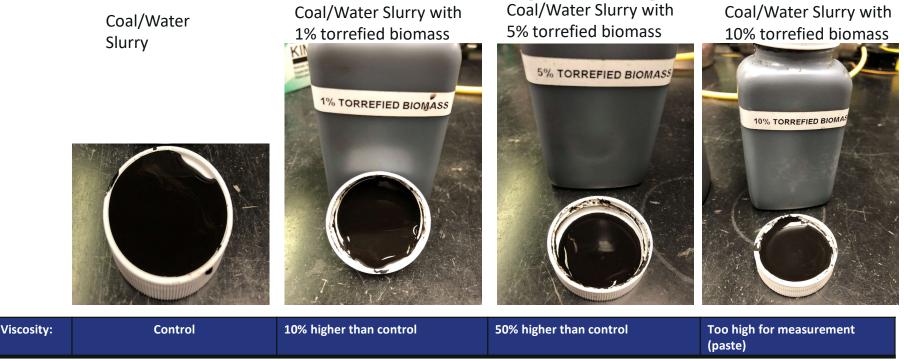
2018 Gasification Systems and (C&CBTL) Project Review Meeting



319 Diesel

2018 Gasification Systems and (C&CBTL) Project Review Meeting

April 10, 2018


90.0

319 Wax

2018 Gasification Systems and (C&CBTL) Project Review Meeting

Coal/Biomass Slurry Preparation

The control sample is the normal slurry used when performing coal only gasification. The other samples are mixtures with torrefied biomass in the labeled proportion.

- 10% torrefied biomass sample is a solid paste after mixing. It is unable to be used for gasification on CAER system
- 5% torrefied biomass sample is very thick and viscosity is 50% higher than control. Unable to be used on CAER system.
- 1% torrefied biomass sample is only about 10% higher than control. Potentially can be used in current form

2018 Gasification Systems and (C&CBTL) Project Review Meeting