Commercialization of Missubishi IGCC/Gasification Technology

October 10, 2011

Photo : 250MW IGCC Demonstration Plant @Nakoso, Japan

MITSUBISHI HEAVY INDUSTRIES, LTD.

Contribute to Both

the Power Generation and

the Chemical Industries through Proven Gasification Technology

• Air-Blown Gasifier with H-T GT for IGCC i.e. for Power :

World Highest Plant Efficiency and Economy *ex.* 250MW IGCC Demonstration Project

• O2-Blown Gasifier for Chemical Products i.e. for SNG, CTL, NH₃, etc. :

High Efficiency and Minimum Utility Consumption including Aux. Power

© 2011 MITSUBISHI HEAVY INDUSTRIES, LTD. All rights reserved.

MHI's Approach to the Market 2 - Formation of Single Point Responsibility MITS

MHI's Typical Business Scheme for Commercial Projects

MHI executes projects step by step

in order to make commercial plants come true reliably and economically.

MHI Air-Blown IGCC System

Essentially different from the other Oxygenblown technologies.

Why IGCC ?

The World Highest Efficiency and Lowest Emission

© 2011 MITSUBISHI HEAVY INDUSTRIES, LTD. All rights reserved.

Realize the Lowest Cost with Various Advantages

- Highest Plant Efficiency Because of Air-Blown Gasifier for IGCC
- Flexibility for Variety of Coal Including Brown Coal Because of 2-Staged Dry Coal Feed and "Fine" Coal Pulverizing System
- Higher Reliability & Easier Maintainability with Membrane Waterwall Configuration
- Effective Utilization of By-Product like Discharged Molten Slag, Recovered Sulfur, etc.
- High Plant Efficiency by "F" or "G" Type High Temp. GT and High Reliability from Abundant "Low Calorie Gas Firing" GT

The world highest efficiency is achieved by Air-Blown IGCC.
The Air-Blown IGCC is MHI's original technology.

CAPEX of MHI Air-Blown IGCC with CO2 Capture is the lowest!!

Present Status of 250MW IGCC Demonstration Project (Nakoso)

^{© 2011} MITSUBISHI HEAVY INDUSTRIES, LTD. All rights reserved.

Present Status of 250MW IGCC [1] Demonstration Project (Nakoso)

- The earthquake (@M9) and tsunami attacked the Demo. Plant on Mar. 11, 2011.
- All facilities flooded 2 m above the ground level and piping, etc. damaged, but the plant shut down quite in safe, with neither dangerous situation like syngas leakage nor explosion.
- No fatal damage due to the earthquake-resistant design of main equipments.
- After 4.5 months restoration, the plant came back on July 28,

Copyright Clean Coal Power R&D Co., Ltd

© 2011 MITSUBISHI HEAVY INDUSTRIES, LTD. All rights reserved.

250MW IGCC Demonstration Project (Nakoso)

- Targets & Accomplishments -

		Targets	Achievements	Note
Performance	Output	250MW	250MW	
	Efficiency (Net, LHV)	> 42.0%	42.9%	
	Carbon Conversion	> 99.9%	> 99.9%	
Emission	SOx	< 8 ppm	1.0 ppm	
	NOx	< 5 ppm	3.4 ppm	
	Dust	< 4 mg/m³N	< 0.1 mg/m³N	
Operational Flexibility	Coal Kinds	Bituminous Sub-bituminous	Chinese, PRB 2 Indonesian Subs Colombian	Continuously expanding
	Start-up Time	< 18 hr	15 hr	
	Minimum Load	50%	Less than 50% (36%)	
	Ramping Rate	3%/min	3%/min	
Reliability	Long-term Continuous Operation	2,000 hr	2,039 hr	
	Long-Term Reliability Run	5,000 hr	5,013 hr	

- All of the demonstration targets have been achieved.
- Future plan focuses on the further improvement of operational flexibility. © 2011 MITSUBISHI HEAVY INDUSTRIES, LTD. All rights reserved.

Contribution of Mitsubishi CCT for CO2 Reduction

CCT Supporting and Nearby Coal Producing Countries

CCT Supporting Schemes

- ► Japan System Infrastructure Export Bi-lateral CO2 Off-set
- Australia Energy Transformed Flagship
- ► USA—DOE Loan Guarantee Program
- ► EU NER (<u>New Entrants' Reserve</u>) 300

CCT Promoting Countries

- Australia China
- ► FU
- USA Indonesia
 - India
 - Asian Countries

Milestone for Commercial Plant Projects Development by MHI

- Feasibility Study 2011
- ► FEED* or EPC** Contract 2012
 - * <u>Front End Engineering & Design</u>
 - Engineering, Procurement & Construction
- ► COD of Commercial Plants : 2016~17

Clean Coal Projects MHI is undertaking

Project Development Schedule

© 2011 MITSUBISHI HEAVY INDUSTRIES, LTD. All rights reserved.

Oxygen-blown IGCC and Gasification for Chemicals in USA

Clean Coal Projects MHI is undertaking

17

Oxygen-blown Gasification for SNG in Indonesia

Technological Innovation Coming Very Soon

- Further Efficiency Improvement
 - Adopting Higher Temperature Innovative Gas Turbine, J-Class and more
 - Applying Newly Developed Energy Conservation System
- Utilization of Lower Grade Higher Moisture Coal
 - From Bituminous and Sub-bituminous to Lignite and Brown Coal

J Class Gas Turbine Market Introduction 🙏 MITE

Delivery of Commercial Units to Begin in 2011. (60Hz) First Commercial operation Unit in 2013 for 2,900MW (M501J×6) Kansai Electric Power Company.

*Pre-Drying may be applied to the future expanding part, to more moistened lignite.

© 2011 MITSUBISHI HEAVY INDUSTRIES, LTD. All rights reserved.

Managing moisture is the "Key."

© 2011 MITSUBISHI HEAVY INDUSTRIES, LTD. All rights reserved.

- > Air-Blown 250 MW IGCC demonstration plant has successfully achieved targets and been proving commercial serviceability.
- \succ Dry feed, 2 stage O₂-Blown Gasifier achieved minimizing oxygen and auxiliary power consumption.
- > Based on the results, MHI has started undertaking commercial projects for the Air-Blown IGCC with F or G type Gas Turbine and O₂-Blown Gasifier.
- > Further efficiency improvement is planned by applying innovative Gas Turbine (J type and 1700degC Class) and newly developed energy conservation systems.
- > Lower grade, higher moisture coal comes to be effectively utilized very soon.

"Mitsubishi's Contribution for

Energy and Environment Solutions"