Development and Field Testing Novel Natural Gas Surface Process Equipment for Replacement of Water as Primary Hydraulic Fracturing Fluid

Project # DE-FE0024314

Griffin Beck
Southwest Research Institute
San Antonio, TX

U.S. Department of Energy – National Energy Technology Laboratory
Addressing the Nation’s Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting
August 26-30, 2019
This presentation provides an overview of recent work to develop a hydraulic fracturing technique that uses natural gas-based foam.

1. Project motivation
2. Technical Status & Accomplishments
 1. Process models
 2. Pilot-scale foam test facility
 3. Foam test results
 4. Current work
3. Synergy Opportunities
4. Future work
Typical hydraulic fracturing treatments consume a significant volume of fresh water.

- Water combined with various chemicals is used to initiate fracture and carry proppant.
- As much as 9.7 million gal/well
- Significant transportation required
- Recovered water must be either cleaned or disposed.
SwRI, Schlumberger, and Chevron are working to develop a novel process that uses natural gas-based foam as the fracturing fluid.

Proposed Natural Gas Fracturing Process

- The proposed process uses NG foam for hydraulic fracture treatment.
- This could reduce water consumption by as much as 80%.
- Natural gas is readily available at well site.
- The recovered natural gas would be processed.
A key challenge with using natural gas relates to the processing equipment.

- All hydraulic fracturing processes pump liquids to achieve high pressures:
 - Typical fracture treatments use water pumps only
 - CO₂ and N₂ foam treatments use cryogenic pumps
- The natural gas foam process uses on-site natural gas
Initial project work focused on identifying an efficient mobile process capable of generating high pressure natural gas.

- On-site processes were considered (e.g., offsite liquefaction/trucking LNG to site not considered)
- On-site storage of CNG or LNG was not considered
- Six (6) processes modeled²-⁴
 - 1 compression process
 - 5 liquefaction processes
- Inlet assumptions:
 - NG supply at 500 psia and 80°F
 - Surrounding wells and/or nearby processing plants to supply required flow rates
 - Pure methane (CH₄) assumed for thermodynamic analyses
- Outlet assumptions:
 - NG discharge at 10,000 psia and 90°F
 - 35 bbl/min (approximately 3700 lb/min)

A compression cycle is the most appropriate process to produce high-pressure natural gas on-site

Key Findings from Process Development

- The optimal process to produce high pressure NG is through direct compression
- Equipment needed to compress gas is commercially available
- A mobile compression fleet is feasible but requires more development
Current work is exploring the impact of natural gas mixtures on the efficiency and equipment footprint of the compression cycle

- Field gas and processed natural gas mixtures may contain heavy hydrocarbon and/or water components
- Gas-liquid separation equipment may be necessary to collect water and natural gas liquids (NGL)

Liquid Flow Rate (gpm)

<table>
<thead>
<tr>
<th>Component</th>
<th>Flow Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comp 1</td>
<td>7.3</td>
</tr>
<tr>
<td>Comp 2</td>
<td>3.2</td>
</tr>
<tr>
<td>Comp 3</td>
<td>123.5</td>
</tr>
<tr>
<td>Comp 4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Liquid dropout rates at 500 psi, 80°F for 35 bbl/min dry gas flow at 10,000 psi discharge
Natural gas composition impacts cycle performance

- Constant volumetric flow at outlet conditions
 - 35 bbl/min at 10,000 psi
- Peng Robinson EOS for natural gas mixtures and REFPROP for pure methane
- Models include inlet separation such that only dry gas is compressed
- Mixtures with higher concentrations of heavy hydrocarbons require less power to compress for equivalent volumetric flow rates
 - CH4 16.9 MW
 - Comp 3 14.8 MW

Compressor power required to compress different natural gas compositions from 500 psi to 10,000 psi at an outlet flow rate of 35 bbl/min
A pilot-scale foam test facility was constructed at SwRI to explore the feasibility of using natural gas-based foam as a fracturing fluid.

LNG is pumped to pressure

LNG is warmed to produce high pressure gas

Aqueous phase is pumped to pressure (out of picture)

Aqueous stream is mixed with the gaseous stream and foam is produced.
Stable natural gas-based foam was generated using the pilot-scale test facility

Key Findings from Pilot-Scale Tests5-6

- Single-pass, pilot scale facility was designed, built, and operated.5-6
- Stable NG foam was generated at 5500 psi using commercially available viscosifiers and surfactants.
- Four base fluid mixtures were used to generate NG foam.
- NG foam is qualitatively similar to other foams observed in literature:
 - Shear thinning, power law fluid
 - Increased viscosity with foam quality

Two mixing methods were explored and results indicate that *field* mixing methods are sufficient to generate stable foam.

Foam mixed in a 100 µm filter and in a custom mixing tee had nearly identical viscosity.

- 70% Quality, 2500 PSI, 95F, 30 ppt J580, 100 micron
- 70% Quality, 2500 PSI, 95F, 30 ppt J580, Mixing Tee
- 30 ppt J580

\[y = 727.28x^{0.555} \]
\[R^2 = 0.9999 \]

Custom Mixing Tee to Match Typical Mixing Velocity

100 µm Filter (20-51LF9 High Pressure Equipment Co.)
Current work is focused on quantifying the effects of gas composition and elevated operating temperature on foam stability

- The effect of elevated temperature on foam stability will be evaluated in the pilot-scale test facility
- Recent facility upgrades include:
 - Enhanced visualization capability to quantify foam texture parameters (e.g., bubble sizes, size distributions) as a function of time and temperature
 - Foam heating capability to 300°F or more
- Additional laboratory tests at Schlumberger to investigate the impact of natural gas composition on foam stability
There are several opportunities for collaboration between the natural gas foam hydraulic fracturing project and other projects.

Foam/Fracture Fluid Test Stand
- Pilot-scale foam test facility can be used to investigate a variety of foams and other fracturing fluids at relevant operating conditions
- Such tests can bridge the gap between bench-top and field demonstrations

Enhanced Oil Recovery (EOR)
- Use of natural gas as a fracturing fluid could enhance recovery
- Present and future research of EOR using natural gas can be leveraged to improve the NG foam fracturing methods

Foam Fluid Data
- Limited NG foam rheology data published
- Foam rheology results from current work can be used in multiple simulation codes
Current results indicate that natural gas foam is a viable hydraulic fracturing fluid and future work will explore production benefits.

Results of Completed Project Work

- Compression cycle is the most efficient means of generating high pressure natural gas stream
- Equipment is commercially available but requires more development to mobilize
- Single-pass, pilot scale facility was designed, built, and operated.
- Stable NG foam was generated at 5500 psi using a commercially available viscosifier and surfactant.
- Relevant mixing methods were explored
- NG foam is qualitatively similar to other foams.
 - Shear thinning, power law fluid
 - Increased viscosity with foam quality
 - Laminar and turbulent regimes

Current and Future Work

- The impact of elevated temperature is being explored in pilot-scale tests
- The impact of natural gas composition on foam stability and rheology is being tested
- Process and reservoir models are being generated
- Work in the next budget period will determine if compressible foams generate improved fracture networks

Acknowledgement

This work was funded by the Department of Energy under award DE-FE0024314, “Development and Field Testing Novel Natural Gas Surface Process Equipment for Replacement of Water as Primary Hydraulic Fracturing Fluid”. Co-funding for this work was provided by Schlumberger Technology Corporation and Chevron Energy Technology Company.

Questions?

Griffin Beck
griffin.beck@swri.org
(210) 522-2509
The work accomplished during this project supports the Department of Energy program goals

The work to develop an alternative hydraulic fracturing process that uses natural gas-based foam supports a “critical component of the DOE portfolio to advance the environmentally-sound development of unconventional domestic natural gas and oil reserves” (as stated in DE-FOA-0001076). The process being developed will help to “ensure these resources are developed safely and with minimal environmental impact” by minimizing the usage of fresh water in the hydraulic fracturing process. The process being developed could decrease water usage by 70% or more compared to typical, water-based hydraulic fracturing techniques.
The overall goals and objectives of this project are...

Project Objective

The objective of this project is to develop a rugged, mobile, and economic system that can take natural gas and prepare it for use in fracturing of gas shale to significantly reduce water usage from traditional fracturing methods.

Project Goals by Budget Period (BP)

- **BP1** - Identify optimal process for bringing the wellhead gas to injection pressure (10,000 psia) and temperature (ambient ±20 °F)
- **BP2** - Complete a laboratory scale test to validate fracturing concept
- **BP3** - Determine if typical hydraulic fracturing fluids (i.e., base fluids) can be used to generate stable NG foam
- **BP4** - Quantify NG foam stability with multi-component natural gas mixtures and at elevated operating temperatures
- **BP5** - Investigate production benefits of using compressible foam fracturing fluids
The current project team includes members from SwRI, Schlumberger, and Chevron:

SwRI
- Griffin Beck: Principal Investigator, Project Manager
- Carolyn Day: Pilot-Scale Test System Lead
- Swanand Bhagwat, Ph.D.: Visualization Lead, Testing Support
- James Donnelly: Technical and Testing Support
- Nathan Poerner: Data Acquisition Lead
- Brandon Ridens: Process Model Lead, Testing Support
- Robin Rutledge: Contracts
- Ellen Smith: Data Acquisition and Testing Support
- John Stubbs

Schlumberger
- Sandeep Verma, Ph.D.: Principal Investigator
- Chris Daeffler, Ph.D.: Foam Rheometer Lead
- Raj Malpani
- Rohit Shukla
- Ashwani Zutshi

Chevron
- Joseph Renk: Federal Project Manager

NTL
- Sarvesh Naik, Ph.D.: Technical Advisor

Schlumberger
- Leo Chaves: Principal Investigator
- Sarvesh Naik, Ph.D.: Technical Advisor
Work for the current budget period is on track with the projected schedule.
Results and key findings have been presented to scientific and industry communities through the following publications and presentations:

