"GoMCarb" Partnership" Offshore Gulf of Mexico Partnership for Carbon Storage Resources and Technology Development Cooperative Agreement: DE-FE0031558

Susan Hovorka, Tip Meckel, and Ramón Treviño Gulf Coast Carbon Center, Bureau of Economic Geology Jackson School of Geosciences The University of Texas at Austin

U.S. Department of Energy

National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 26-30, 2019

Presentation Outline

- Offshore storage portfolio
- Partners and collaborators
- Storage resource status
- Risk assessment blowouts
- Monitoring
- Knowledge sharing stakeholder surveys

Global and US Offshore storage portfolio

Global and US Offshore storage Status

Partners and collaborators

GDBS Well data

Dense data

Paleogeography and principal depositional systems of the Middle Miocene depositional episode

Storage Resource Assessment status

Initial look at newest survey – TX OBS (mid-Texas Coast)

Seismic data owned by SEI, Inc. Interpretation is that of the Bureau of Economic Geology.

Chandeleur Sound, LA

Gulf Basin Depositional Synthesis, UTIG

High Island Analog studies

High Island Prospect Evaluation

Analogs

High Island prospect studies: Three-D models

High Island Fault Studies

Risk Assessment – Faults

Josh White, LLNL

Reprocessing High Resolution

Ye Feng BEG

Risk Assessment of Offshore CO₂ Wells and Pipelines

Curtis M. Oldenburg, Lehua Pan, Yingqi Zhang, and Quanlin Zhou (LBNL)

- Offshore GCS needs sub-sea risk assessment
- For the GoMCarb project, we are coupling three existing models to understand consequences of offshore CO₂ leaks and blowouts
 - T2Well for reservoir-well flow
 - TAMOC for jet and buoyant plume flow in the water column
 - NRAP MSLR for atmospheric dispersion

0

To understand effects of water column (depth), we simulated a large CO_2 blowout (~35 kg/s) for two cases

CO₂ transitions from jet to buoyant plume and mostly dissolves during rise in 50 m case CO₂ mostly jet-like in 10 m case with very little dissolution

Preliminary results show

- Median bubble size is $\sim 0.5 \text{ mm}$
- 99% of the CO₂ is dissolved in the seawater for a blowout at 50 m depth (v. little surface emission)
- 94% of the CO₂ is emitted at the sea surface for a blowout at 10 m depth (v. little dissolution)
- The CO₂ concentration in air reduces by a factor of 100 within 0.5 km of the emissio**21** site in the 10 m case under light wind (1 m/s at 10 m elevation).

Offshore Monitoring

- Adaption of global experience to GoM Conditions
 - STEMM CCS, Northern Lights, Tomakomai
- Pipelines Daniel Chen. Lamar Univ.
- High resolution seismic
 - Improved skills from Tomakomai
- DAS in this setting –Jonathan Ajo Franklin (Rice University)

Infrastructure

Darshan Sachde, Ray Mc Kaskle, Katherine Drombrowski, Trimeric

- 10-L Existing well analysis 33 wells
 - Diameters 5.5" to 10.8"
 - Depth 5,800 to 14,000 ft
 - Key risk, any value?
- Two existing pipelines in 10-L
 Assess suitability for retrofit
- Future Aker Solutions
 - Options for new well completions

Knowledge Sharing

American Beach and Shore Preservation Association

50th annual Offshore Technology Conference

Events hosted at Lamar University, Beaumont: Joint project meetings, Community interactions

Upcoming: International Offshore Conference Series: 4th International Workshop on Offshore CCS with STEMM-CCS final results. GCCC UT, IEAGHG, STEMM-CCS. Hosted by University of Bergen, 11-13 Feb 2020

Joint GoMCarb-SECARB meeting

Figure 1.2 - Group photo at Walter Umphrey State Park stop 1 on the field trin. Note the facility in the

Information Seeking Studies

R Lim¹,L. Atkinson¹, Ln Kahlor¹,Hilary Clement Olson², Emily Moskal² ¹Stan Richards School of Advertising and PR, Moody College of Communication,, The University of Texas at Austin

- Low CCS awareness. Around 10% among people in the U.S (Boyd et al., 2017); 67% knew very little about CCS (Kahlor et al. 2017)
- Climate change. Perceive as an environmental risk, seriousness → higher support (Selma et al. 2014)
- **Trust.** Trust varied by different information source (e.g., lower trust government and oil & gas industry, higher trust university scientists) (Kahlor et al. 2017)
- Benefits and risks perception. Impacts CCS support/opposition (Huijteset al. 2007; Tokushige et al. 2007; Wallquist et al. 2012)
- **Misconception.** Based on past experiences (e.g., similar industries, capture processes, etc.), and inaccurate info (Ashworth et al., 2015)

How to create messages that resonate with stakeholders in Coastal Areas

- Data collection in Port Arthur area July, 2019
- Early messages
- Jobs/clean industry
- Hurricanes/flood

U.S Fish and Wildlife Lamar University Big Thicket Association Texas Point Nat'l Wildlife Refuge McFadden Nat'l Wildlife Refuge Coastal Fisheries (TPWD)

Sea Rim State Park Community In-Power and Development Ass. Inc. International Seafarers Ass. Realtors, lawyers

Accomplishments to Date

- Mapping analog sites at level of detail needed to advance toward real projects. .
- -Broaden coverage in basin
- -Begin assessments of fault risk
- Complete initial blowout risk assessment
- -Begin knowledge sharing
- Begin stakeholder engagement work

Lessons Learned

- Dense data requires strategic approach to support rapid progress: use detailed "analog" sites to probe deeply into data needs.
- Infrastructure evaluation remains challenging data are incomplete and scattered
- Shallow water near-shore setting is different from deeper offshore settings – e.g. blowout response

Synergy Opportunities

- Strong global opportunities to leverage US efforts
- Possibility for US leadership in future.
- Collaboration with SECARB offshore and groups working offshore Atlantic and Pacific

Next Steps

- Project in full swing
- Continued characterization of regions followed by analog sites
- Modeling efforts –esp. fluid flow and geomechanics will be a next step
- Shallow-Gulf specific risks, monitoring, and infrastructure.

Appendix

Benefit to the Program

- Establishment of a Government-Academic-Industry Partnership for Offshore CCS Research.
- Determining the CO₂ storage resource potential of offshore oil, gas, and saline bearing formations.
- Improving carbon storage efficiency and security by advancing new and early-stage monitoring tools and models.
- Improving capabilities to evaluate and manage environmental risks and uncertainty through integrated risk-based strategic monitoring and mitigation protocols
- Disseminating findings and lessons learned to the broader CCS community and key stakeholders

33

Project Overview: Goals and Objectives

- The primary objective of this FOA is to develop an Offshore Carbon Storage Partnership that is similar in structure to the existing RCSPs Characterization Phase, but is focused on sub-seafloor saline or hydrocarbon reservoir-associated geologic storage.
- Assemble the knowledge base required for secure, longterm, large-scale CO₂ storage, with or without enhanced hydrocarbon recovery.
- Identify and address knowledge gaps, regulatory issues, infrastructure requirements, and technical challenges associated with offshore CO₂ storage.

GoMCarb Organizational Chart

Gantt Chart

Partnership for Offshore Carbon Storage Resources and		BUDGET PERIOD 1								BUDGET PERIOD 2								
Technology Development in the Gulf of Mexico			YEAR 1 (2018)				YEAR 2 (2019)				YEAR 3 (2020)				YEAR 4 (2021)			
Task	Tasks	qtr 1	qtr2	qtr3	qtr4	qtr 1		· · · ·		qtr 1	qtr2	qtr3	qtr4	qtr 1	gtr2	qtr3	qtr4	
		J-F-M									A-M-J							
			201				2019			2020				2021				
1	Project Management, Planning, and Reporting	M1		M2														
	Revision and Maintenance of Project Management Plan	D1a D1t)						G-NG									
	Progress Report	Q	Q	Q	Q/A	Q	Q	Q	Q/A	Q	Q	Q	Q/A	Q	Q	Q	Q/A/F	
2	Offshore Storage Resources Characterization						M4								M8			
2.1	Database Development		D2.1a		M3		D2.1b				D2.1c				D2.1d			
2.2	Data Gap Assessment		D2.2a				D2.2b				D2.2c				D2.2d			
2.3	Offshore EOR Potential		D2.3a				D2.3b				D2.3c				D2.3d			
3	Risk Assessment, Simulation and Modeling								M5				M6					
3.1	Risk Assessment and Mitigation Strategies				D3.1a				D3.1b				D3.1c				D3.10	
3.2	Geologic Modeling				D3.2a				D3.2b				D3.2c				D3.20	
4	Monitoring, Verification, Accounting (MVA) and Assessment												M7					
4.1	MVA Technologies and Methodologies				D4.1a				D4.1b				D4.1c				D4.10	
4.2	Plans for Field Testing of MVA Technologies				D4.2a				D4.2b				D4.2c				D4.20	
5	Infrastructure, Operations, and Permitting																	
5.1	CO2 Transport and Delivery			D5.1a				D5.1b				D5.1c				D5.1d		
5.2	Scenario Optimization			D5.2a				D5.2b				D5.2c				D5.2d		
5.3	Communication			D5.3a				D5.3b				D5.3c				D5.3d		
6	Knowledge Dissemination																M9	
6.1	Stakeholder Outreach	D6.1a				D6.1b				D6.1c				D6.1d				
6.2	Technical Outreach	D6.2a				D6.2b				D6.2c				D6.2d				
6.3	Advisory Panel				D6.3a				D6.3b				D6.3c				6.3d	