Integrated Midcontinent Stacked Carbon Storage Hub

DE-FE0031623

Andrew Duguid Battelle 505 King Ave Columbus, Ohio 43201 Duguid@battelle.org +1 614 561 4468

> U.S. Department of Energy National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 26-30, 2019

Project Team

ADM

ARI

Battelle

Berexco

Conservation and Survey Div, SNR, UNL

DGR&M

Energy and Environment Research Center

Great Plains Energy

Great Plains Institute Improved Hydrocarbon Recovery Kansas Geologic Survey LANL **Loudon Technical Services** Nebraska Public Power District PNNL Schlumberger

Introduction

- The Integrated Midcontinent Stacked Carbon Storage Hub plans to gather CO₂ from eastern and central NE and transport it southwest toward Red Willow County, NE along a CO₂-source collection corridor. The CO₂ will then be piped south into central KS along a stacked storage corridor.
- CarbonSAFE Program Objective: Develop a midwestern carbon storage facility having multiple sites with a 50-Mt or greater capacity to safely, permanently, and economically store CO₂ by 2025.

Phase II IMSCS-HUB Objectives

- Objective 1: Demonstrate multiple 50 Mt storage sites for the IMSCS-HUB concept by evaluating a Kansas and Nebraska site, each with the ability to safely, permanently, and economically store anthropogenic CO₂ through stacked-storage.
- Objective 2: Develop 50 Mt+ storage scenarios and provide a basis for UIC permitting.
- Objective 3: Demonstrate long-term seal integrity and minimize induced seismicity.
- Objective 4: Develop strategies to manage and store CO₂ from multiple sources.
- Objective 5: Leverage the data collected to scale the project to develop a regional commercial enterprise (three to ten 50 Mt+ storage sites).
- Objective 6: Identify and mitigate public outreach and regulatory barriers
- Objective 7: Develop a detailed commercial development plan.

Project Area

- Kansas
- Nebraska
- Kansas

Corridors

- Source Corridor (Initially Ethanol Derived CO₂)
 - Run across IA into NE and then southwest across NE
 - Optimize maximize the number of sources/amount of CO₂ to develop market and infrastructure for CCUS
 - Ethanol plants in the corridor with annual emissions of greater than 5 Mt. Capture in the \$12/t range
 - Saline storage at many of the ethanol plants in NE
 - Bring in electric utility generated CO₂ as capture comes on line. Existing market from ethanol derived CO₂ will provide certainty that a utilization market and storage is possible
 - 5 other sources (4 electric utility and 1 refinery) with 20 Mt annual emissions. Capture in the \$57/t range (NETL 2015)
- Stacked Storage Corridor
 - Run from SW NE southeast into SW KS
 - Saline storage and CO₂ EOR
 - Co-locate infrastructure for Saline and CO₂ EOR.

Storage: Geology

STRATIGRAPHY*										
Era	Period	Southwest Neb	oraska	Southwest Kansas						
	ian	Nippewalla	caprock	Nippewalla	caprock					
	erm e	Sumner	h a fil a	Sumner						
	Pe	Council Grove	pame	Council Grovo	gas-bearing					
		Admire	caprock	Admire						
		Wabaunsee		Wabaunsee	baffle and					
	c	Shawnee	deep	Shawnee	deen saline					
	nia	Douglas	saline	Douglas						
	lvar	Lansing-Kansas City	oil-bearing	Lansing-Kansas City	oil-bearing					
	lsv	Pleasanton	deen	Pleasanton	baffle and					
~	Penr	Marmaton	colino	Marmaton	deep saline					
oic		Cherokee	Saine	Cherokee						
ZOS		basal sandstone	oil-bearing	Atoka	caprock					
Pale				Morrow	oil-bearing					
-	Missippian									
				Chester	oil-bearing					
				Meramec	baffle					
				Osage	deep saline					
	_			Kinderhook	baffle					
	Devonian Silurian									
	Ordovic-			Viola						
	ian			Simpson	deep saline					
	Combries			Arbuckle	· ·					
	Cambrian			Reagan	bottom barrier					
Prec	ambrian	crystalline basement								

* formal lithostratigraphic group and stage names used unless otherwise noted; not to scale

LEGEND: shale + limestone shale + sandstone + limestone shale + limestone ± evaporite shale + sandstone limestone ± shale sandstone + limestone ± shale sandstone dolomite igneous and metamorphic rocks major unconformity

Geologic Characterization Workflow

Petrophysics and Static Earth Model

- Structural and stratigraphic framework from formation tops in 205 wells
- Log data from 171 wells (e.g. gamma ray, neutron, density, sonic)
- 267 core data measurements (e.g. porosity, perm, grain density) from 13 wells

Static Earth Model Updates

Effective porosity and permeability histograms for Phase I and Phase II SEMs for the Sleepy Hollow site

Differences due to addition of new core data and updated porositypermeability transforms

Data Gap Assessment

Data Gaps were examined to address:

- 1. Regulatory requirements
 - EPA UIC Class VI requirements
 - Fluid Sampling and Coring
 - Well Logging and Testing
- 2. Reduction in uncertainty of the geologic and reservoir models

Data gaps identified are related to:

- Lithologic data
- Geophysical/Model data
- Geomechanical data
- Geochemical data

Sensitivity Analysis

 CO_2 storage is most sensitive to perforation zone, BHP constraints, initial reservoir pressure, and CO_2 -brine relative permeability

Effects of vertical permeability anisotropy is less sensitive, but non-negligible.

Sensitivity to salinity and thermal gradient appear to be insignificant.

Lower Level 🔲 Upper Level

New Geologic Data Collection Plan

- Drilling one new characterization well: Sleepy Hollow field SW Nebraska
- New whole core for specialized core analysis (e.g. rel. perm, geomechanics)
- Advanced wireline log data: e.g. elemental spectroscopy, nuclear magnetic resonance, microimagers.
- Well tests DSTs, mini-frac, to evaluate injectivity, permeability, pressure response.

Whole Core and Analysis

Analysis	Core Samples					
Thin-Section Slide	roconvoir 8 coprock					
Preparation						
Thin-Section Petrography	reservoir & caprock					
Bulk Mineralogy	reservoir & caprock					
Plug Drilling	reservoir & caprock					
Water and Oil Fluid	roomvoir					
Saturations (reducible)	Teservon					
Routine Core Analysis	reservoir					
Relative Permeability	reservoir					
Capillary Pressure	reservoir & caprock					
Effective Porosity	reservoir					
Fluid Typing and	reservoir					
Saturations (irreducible)						
Tight Rock Micro-porosity,						
Micro-permeability	саргоск					
Threshold Entry Pressure	caprock					
Rock Mechanics	reservoir & caprock					
PVT Fluid Analysis	reservoir					

New Well

New Data Collection at Sleepy Hollow Field

- Focus on deep saline intervals in the Pennsylvanian Wabaunsee, Shawnee-Douglas, and Pleasanton-Maramaton groups and caprocks of the Council Grove and Sumner groups
- Whole Core: 110 ft
 - Admire, Wabaunsee, Oread, Marmaton
- Sidewall cores: 28
- Logs:
 - Triple Combo
 - Nuclear Magnetic Resonance
 - Dipole Sonic
 - Formation Micro Image
 - Elemental Capture Spectroscopy

New Data Collection at Patterson Heinitz Hartland

Patterson will focus on Mississippian and Ordovician deep saline storage zones within the Osage, Viola, and Arbuckle formations, and confining units such as the Meramec, Morrow and Sumner Group.

Next Steps

Laboratory core sample measurements

- Petrophysical, lithological, geo-mechanical, fluids
- Validate porosity permeability relationship

3D Static Earth Model (SEM)

- Refine facies model
- Update 3D petrophysical model
- Update storage resource estimate

- 3D Dynamic Reservoir Model (DRM)
 - Updated DRM with new capillary pressure, relative perm, and reservoir data
 - Update injection strategy and storage resource estimate

Pipeline Routing

- Ethanol plants in the region use natural gas as a fuel for processing corn.
 - Natural gas pipelines run to every ethanol plant in Nebraska and Kansas.
 - These pipelines occur within 3 miles of each potential site in Nebraska and Kansas.
- Routes generated the weighted-cost surface involves laying a grid overtop of the geographic area and determining the cost to traverse from one cell to a neighboring cell.
- Included Kansas and Nebraska existing pipeline rights of way
- Sources were hardwired into the system

Geographic barriers

- Air Quality
- Surface Water
- Aquifers
- Wetlands
- Vegetation/Land Cover
- Land Ownership
- Protected Lands
- Historic Places
- Wildlife
- Mines
- Contaminated Sites
- Socioeconomic Resources

Updated Pipeline Routes

 Pipeline routes, by source, leading to CO₂-EOR sinks (blue), saline sinks (red), and all sinks (black) for (clockwise from top left) all sources, ethanol plants, CFPPs and ethanol plants, and CFPPs alone.

Risk Assessment

Pipeline routes

Number of accidents associated with each type of cost for CO_2 , gas distribution, gas transmission, and non- CO_2 hazardous liquids pipelines

Maximum costs by cost type for CO_2 , gas distribution, gas transmission, and non- CO_2 hazardous liquids pipelines.

Config.	Mile- CO ₂		Gas Di	stribution	Gas Transmiss	ion/Gathering	Non-CO ₂ Haz. Liquid			
	age	Average	Median	Average	Median	Average	Median	Average	Median	
а	344	\$428,592	\$114,025	\$576,689	\$66,381	\$6,283,642	\$752,329	\$22,524,529	\$758,212	
b	295	\$367,542	\$97,783	\$494,544	\$56,926	\$5,388,588	\$645,165	\$19,316,094	\$650,211	
С	79	\$98,427	\$26,186	\$132,437	\$15,245	\$1,443,046	\$172,773	\$5,172,784	\$174,124	
d	1546	\$1,926,171	\$512,448	\$2,591,747	\$298,331	\$28,239,854	\$3,381,104	\$101,229,426	\$3,407,545	

Summary

- New Data Collection based on uncertainty and gap assessment is ongoing
 - Sleepy Hollow Field: Characterization well drilled and cemented. Core, log, and teste data are under analysis or being added to the geologic model
 - Patterson Heinitz Hartland Field: 3D seismic collected for Patterson and Hartland was acquired and is being reprocessed
 - New data will be incorporated to site models to update the number and location of planned injection and monitoring wells allowing an update to the storage costs
- Updated pipeline route model nearly complete that will allow for better estimate of pipeline distances and diameters that will allow better estimate of transport costs
- Risk assessment ongoing and providing practical information for commercialization

Thank you!

Andrew Duguid Battelle Energy Division 505 King Ave Columbus, Ohio 43201 Duguid@battelle.org +1 614 561 4468

 These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

- The objectives of the IMSCS-HUB program build on the lessons learned from the RCSP's and extend the framework for geologic storage site characterization and development to the commercial scale. The IMSCS HUB Project will systematically address the technical challenges of commercial-scale CO₂ storage and will aid DOE in meeting their Carbon Storage Research and Development Program goals:
- (1) Develop and validate technologies to ensure 99 percent storage permanence.
- (2) Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
- (3) Support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent.
- (4) Develop best practice manuals for site characterization, public outreach, risk management and operations for geologic storage

Introduction

- The Integrated Midcontinent Stacked Carbon Storage Hub plans to gather CO₂ from eastern and central NE and transport it southwest toward Red Willow County, NE along a CO₂-source collection corridor. The CO₂ will then be piped south into central KS along a stacked storage corridor.
- CarbonSAFE Program Objective: Develop a midwestern carbon storage facility having multiple sites with a 50-Mt or greater capacity to safely, permanently, and economically store CO₂ by 2025.

Phase II IMSCS-HUB Objectives

- Objective 1: Demonstrate multiple 50 Mt storage sites for the IMSCS-HUB concept by evaluating a Kansas and Nebraska site, each with the ability to safely, permanently, and economically store anthropogenic CO₂ through stacked-storage.
- Objective 2: Develop 50 Mt+ storage scenarios and provide a basis for UIC permitting.
- Objective 3: Demonstrate long-term seal integrity and minimize induced seismicity.
- Objective 4: Develop strategies to manage and store CO₂ from multiple sources.
- Objective 5: Leverage the data collected to scale the project to develop a regional commercial enterprise (three to ten 50 Mt+ storage sites).
- Objective 6: Identify and mitigate public outreach and regulatory barriers
- Objective 7: Develop a detailed commercial development plan.

Phase 2 Organization

Gantt Chart

	Qtr 3, 2019	E.		Qtr 4, 2019	9		Qtr 1, 202	0		Qtr 2, 202	20		Qtr 3, 2020		
Task Name	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	S
> Task 1 Project Management and Planning			1.1°					ale		ili					
> Task 2 Site Access and Permitting															
> Task 3 Feasibility Data Collection Planning															
> Task 4 Storage Complex Feasibility Data Collection															
> Task 5 Storage Complex Analysis and Model Update	Г												Ĩ		
> Task 6 Outreach															
> Task 7 Risk Assessment and Mittigation															
> Task 8 Regulatory and Contractual Assessment															
\triangleright Task 9 CO2 Management and Commercial Development Strategy															

