

SECARB (Citronelle) Phase III

Prepared For: 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting

Prepared By: George Koperna ADVANCED RESOURCES INTERNATIONAL, INC. August 27, 2019

Acknowledgement

This presentation is based upon work supported by the Department of Energy National Energy Technology Laboratory under **DE-FC26-05NT42590** and was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Citronelle Phase III Project

Project Objectives

- 1. Understand the coordination required to successfully integrate all four components (capture, transport, injection and monitoring) of the project;
- 2. Document the permitting process for all aspects of a CCS project;
- 3. Test the CO₂ flow, trapping and storage mechanisms of the Paluxy Formation, a regionally extensive Gulf Coast saline formation;
- 4. Demonstrate how a saline reservoir's architecture can be used to maximize CO₂ storage and minimize the areal extent of the CO₂ plume;
- 5. Test the adaptation of commercially available oil field tools and techniques for monitoring CO₂ storage (e.g., VSP, cross-well seismic, cased-hole neutron logs, tracers, pressure, etc.);
- 6. Test experimental CO₂ monitoring activities, where such technologies hold promise for future commercialization; and
- 7. Support the United States' largest commercial prototype CO_2 capture and transportation demonstration with injection, monitoring and storage activities.

1. Project Coordination

2. CCS Permitting Process

Select References

A. Oudinot et al. GHGT-14 (2018)

- Details UIC Class V permit application process, requirements and permit closure

D. Riestenberg et al. CMTC (2015)

- Details UIC Class V permit details including: injection well permit and CO₂ sequestration well standards

R. Esposito et al. Energy Procedia 4 (2011)

- Details capture facility permitting, transportation permitting and storage permitting

3. Test the CO₂ Flow, Trapping and Storage Mechanisms of the Paluxy

Baseline Reservoir Characterization:

- Analysis of over 80 existing oilfield well logs for porosity, thickness and depositional
- •Sand mapping to determine "open" or "closed" sand units.

Collected new geologic data on the Paluxy reservoir and confining unit with the drilling of the project's three new wells:

- •210 feet of whole core and 70 percussion sidewall cores
- •Full set of open hole logs on all three wells (quad combo, MRI, spectral gamma, mineralogical evaluation, waveform sonic, cement quality, pulsed neutron capture)
- •Baseline vertical seismic profiles and crosswell seismic collected in Feb 2012

	System	Series	Stratigraphic Unit	Major Sub Units		Potential Reservoirs and Confining Zones	
		Plio- Pliocene	Citronelle		nelle Formation	Freshwater Aquifer	
		Miocene	Undifferentiated			Freshwater Aquifer	
	_	0		Chickasawhay Fm.		Base of USDW	
	Tertia	ligocene	Vicksburg Group	Bucatunna Clay		Local Confining Unit	
	2		Jackson Group			Minor Saline Reservoir	
		oce	Claiborne Group	Talahatta Fm.		Saline Reservoir	
		ine	Wilcox Group	Hatchetigbee Sand			
		70		Bashi Marl		Saline Reservoir	
		aleo		Salt Mountain LS			
		cene	Midway Group	Porters Creek Clay		Confining Unit	
			Selma Group			Confining Unit	
		Upper	Eutaw Formation			Minor Saline Reservoir	
			Tuscaloosa Group	Upper Tusc.		Minor Saline Reservoir	
				Mid. Tusc	Marine Shale	Confining Unit	
				Lower Tusc.	Pilot Sand Massive sand	Saline Reservoir	
	0	Lower	Washita-	Dantzler sand		Saline Reservoir	
	ret		Fredericksburg	Basal Shale		Primary Confining Unit	
	taceous		Paluxy Formation	'Upper' 'Middle' 'Lower'		Injection Zone	
			Mooringsport Formation			Confining Unit	
			Ferry Lake Anhydrite			Confining Unit	
			Donovan Sand	Rodessa Fm.	Upper'	Oil Reservoir	
				'Middle'		Minor Saline Reservoir	
					'Lower'	Oil Reservoir	

Geologic Characterization Results

- Sandstone and mudstone units are continuous at this scale
- CO₂ dispersion vertically
- Multiple stacked plumes

Storage Mechanisms of Paluxy Form.

The estimated radius of the CO_2 plume 30 years after cessation of injection is approximately 1000 ft. (305m), which is less than the project's initial AoR of 1,700 ft.

4. Utilizing Reservoir Architecture

- Limiting the extent of the CO₂ plume by not completing high permeability sand layers
- By shutting in the high permeability sand layer, the plume radius was decreased by ~200 ft

High Permeability Sand Opened

5. Commercial Monitoring Protocols

 \Rightarrow Results of the PNC logs demonstrate confinement in the injection zone.

• Replacement of brine with CO₂ caused a decrease in velocity through the storage geologic unit

• Time-lapse survey during injection in June 2014

Spinner Surveys

Sand	Sand Unit Properties (ft)			Nov 2012	Aug 2013	Oct 2013
Unit	Bottom	Тор	Thickness	Flow %	Flow %	Flow %
J	9,454	9,436	18	14.8	18.7	16.7
I	9,474	9,460	14	8.2	20.4	19.6
Н	9,524	9,514	10	2.8	7.4	7.7
G	9,546	9,534	12	2.7	2.1	0.9
F	9,580	9,570	10	0.0	1.2	1.2
Е	9,622	9,604	18	26.8	23.5	30.8
D	9,629	9,627	2	0.0	0.0	0.0
С	9,718	9,698	20	16.5	11.8	10.3
В	9,744	9,732	12	4.9	0.6	0.4
А	9,800	9,772	28	23.3	14.3	12.4

Caged Fullbore Flowmeter (6 arm CFBM)

6. Experimental Monitoring: MBM

- 18 Level, tubing deployed, clamping geophone array (6,000-6,850 ft)
- Two in-zone quartz pressure/temperature gauges for reservoir diagnostics
- U-tube for high frequency, in-zone fluid sampling (tube-in-tube design)
- **Fiber optic cables** for distributed temperature (DTS) and acoustic measurements (DAS)
 - Heat-pulse monitoring for CO₂ leak detection
 - Acoustic array for seismic (equivalent to 3m spacing)
- 2 7/8" production tubing open for logging

Experimental Monitoring: DAS

2014 DAS-VSP Survey Results

- Migrated image →
 - Observed strong reflectors
 - Good tie to formation logs (e.g., Selma Chalk)
- No "bright" spot observed where CO₂ was injected

2014 DAS-Cross Well Survey Results Rand

DAS Data at 9,340 ft – Only See Random Noise, Except Some Coherent Noise Not related to sweep

Support the United States' Largest Commercial Prototype CO₂ Capture and Transportation Demonstration

- Injected, stored, and monitored 114 kt for the largest (at the time) integrated commercial prototype CCTS project at a coal-fired power plant.
- 2. First time CO₂ transfer of custody occurred between an anthropogenic source and a transport/storage operator.
- 3. First with Class VI elements in their CO₂ injection permit.
- 4. Demonstrated nonendangerment (Class VI protocols) and closed permit (first).

Contact

Office Locations

Washington, DC 4501 Fairfax Drive, Suite 910 Arlington, VA 22203 Phone: (703) 528-8420 Fax: (703) 528-0439

Knoxville, TN 1210 Kenesaw Ave, Suite 1210A Knoxville, TN 37919 Phone: (865) 240-3944

