Wabash CarbonSAFE

Christopher Korose Steve Whittaker (DE-FE0031626)

(CarbonSAFE Illinois – East Sub-Basin)

Hannes Leetaru Christopher Korose (DE-FE0029445)

University of Illinois

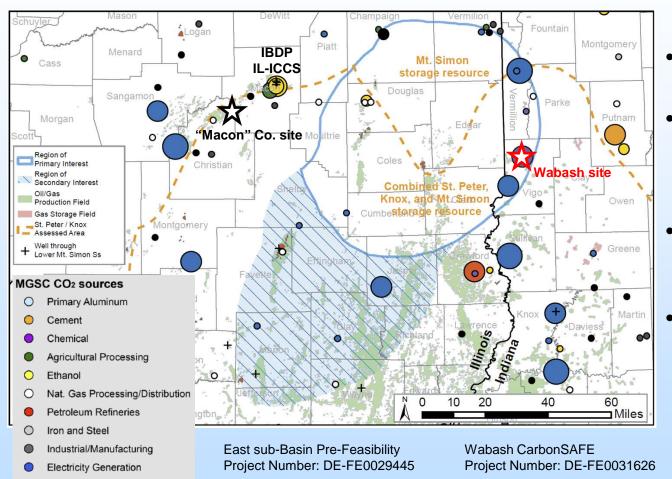
U.S. Department of Energy

National Energy Technology Laboratory

Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture,

Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting

August 26-30, 2019



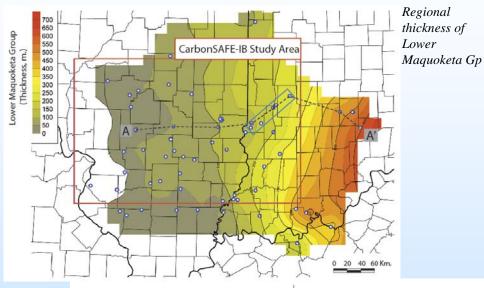
Presentation Outline

- Phase I (Illinois East Sub-Basin):
 - Overview, Accomplishments
- Phase II (Wabash): Technical Status
 - CO₂ Source and Site Host
 - Storage Complex
 - Data Gaps and Acquisition
 - Selected Tasks: Current Work
- Project Challenges
- Summary, Accomplishments, Next Steps

Phase I: Overview

CarbonSAFE Ilinois – East Sub-Basin

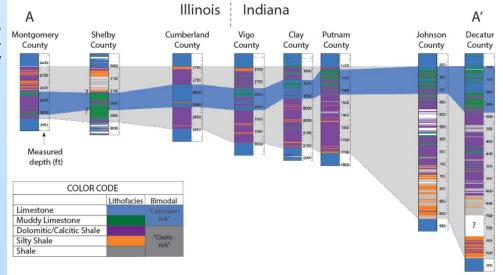
- 04/01/2017–10/31/2019
- Regional assessment of CO₂ sources and saline storage reservoirs/seals
- Building on regional partnership work...
- Primary/secondary areas of geological interest
 - Saline storage options
 - EOR potential


US EPA GHGRP 2017

Phase I: Overview

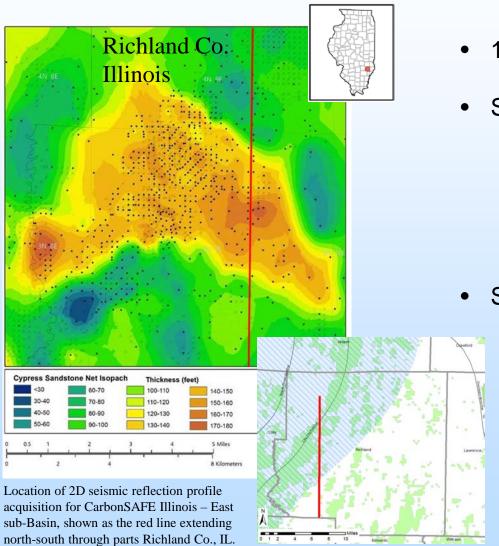
CarbonSAFE Ilinois East Sub-Basin (DE-FE0029445)

Gp


• Improve geological mapping,

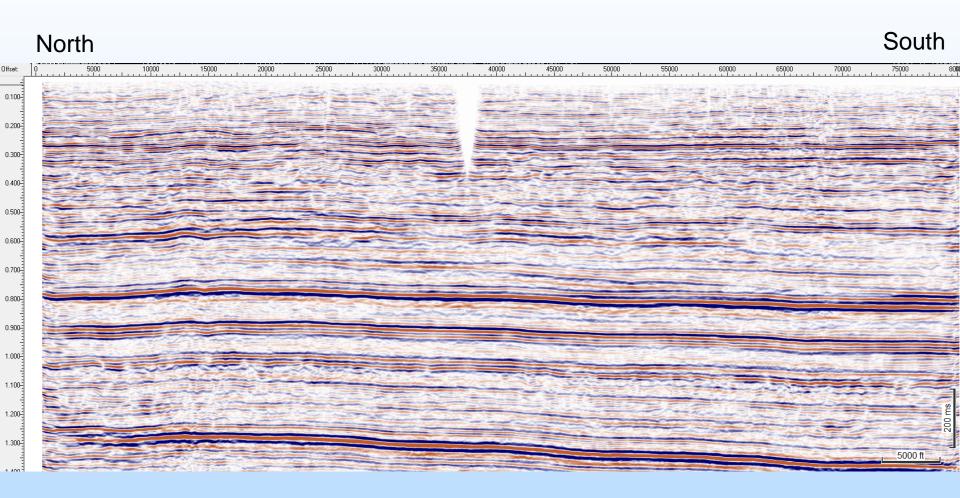
- 8 Formations re-mapped
 - Update basic mapping of structure and/or isopach
 - Faults, structures

regional analysis


- Uncertainty, data gaps/needs
- Evaluation of caprock integrity
 - Secondary seal: Maquoketa Gp

Maquoketa Gp Lithofacies model

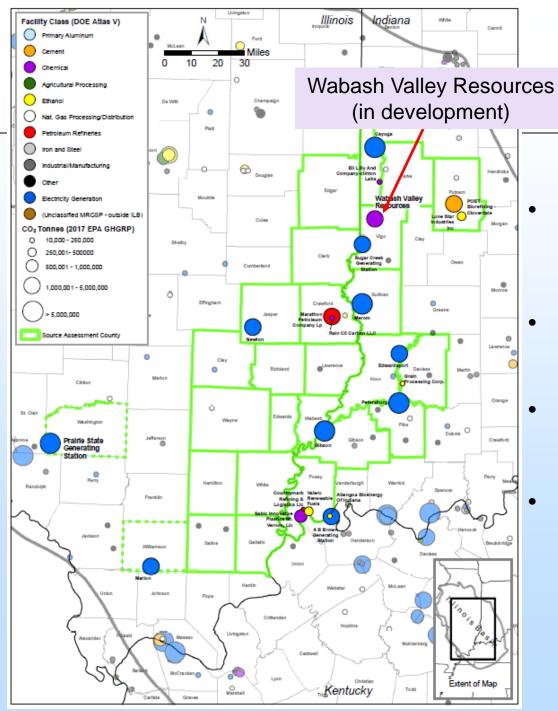
2D Seismic Acquisition



- 15 miles acquired 7/27-29
- Storage Options in Deep Basin
 - Multiple saline storage options
 - Clay City Anticline (faulted?)
 - Saline storage in Miss. Cypress SS
 - 0.2 to 2.3 billion tonnes (Atlas 2012)
 - Evaluate seismic for Cypress thickness
- Synergistic with:
 - Cypress ROZ work in region
 - Stacked Greenfield and Brownfield ROZ Fairways (N. Webb @ 2:40p Thursday)

Processed 2D Example (Phase I)

Pre-interpretation



CarbonSAFE Phase I

Accomplishments / Remaining Work

Task #	Description	% Complete
1	Project management and planning	95
2	Establish CCS Coordination Team	100
3	Develop Plan to Address Challenges of Commercial- Scale CCS Project	80
4	Conduct High-Level Technical Sub-Basin Evaluation	95
5	CO2 Source and Transportation Assessment	100
6	National Risk Assessment Partnership (NRAP) Screening	100

- Topical reports:
 - (11) Geological char., NRAP evaluation, legal/permitting, stakeholder engagement, source/transport char., ...
 - Site feasibility plan (Wabash)
- 2D Seismic (~15 miles acquired 7/27-29)
- Remaining:
 - Seismic interpretation
 - Finish sub-Basin evaluation, Risk Assessment
 - Final reporting
 Development scenario
 for integrated CCS

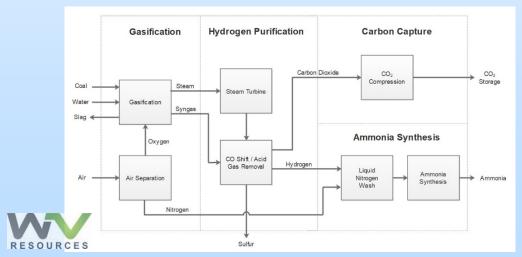
Background: CO₂ Sources

- Phase I CO₂ sources screened for age, emissions, capture-readiness, interest in participation
- Wabash Valley Resources industrial site identified
- Phase II partner discussions began in August 2017, proposal
- Phase II study awarded (Feb 2019)

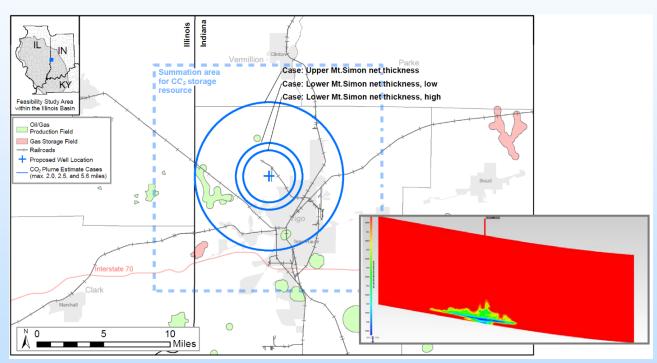
Phase II: CO₂ Source and Storage Site

Wabash Valley Resources (WVR; formerly Quasar Syngas)

- Site at former Wabash River Generating Station
- IGCC Unit 1A (DOE repowering 1993-1995)
 - Clean Coal Technology Program, Round IV Demonstration Project
- Ownership changes, operations suspended (May '16, "mothballed")
- WVR purchased plant May '16 for ammonia production from petcoke. Conversion in progress...



Wabash Valley Resources

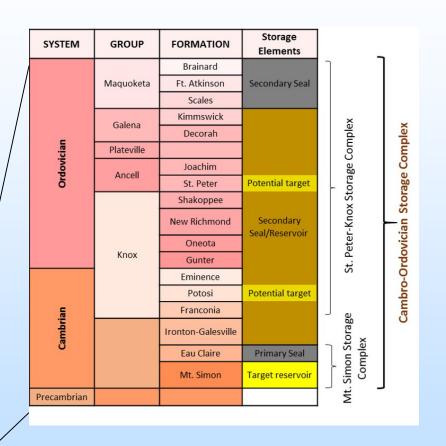


Aerial view of the WVR facility with various components of the syngas to ammonia process.

- Target 2023 commercial operation
- Petcoke -> Syngas -> H₂ -> Ammonia + CO₂
- WVR business model: change plant design to maximize CO₂ recovery for storage or EOR sale (45Q credits)
 - 65% -> 98% CO₂ recovery
- >95% pure stream CO₂ @ 1.65 million tonnes/yr
 - 1630 tonnes/day anhydrous ammonia

Phase II: WVR Site Characterization

Region surrounding Feasibility site centered in Vigo County, Indiana. 50 MT CO2 plume size estimates (the maximum of 3 cases) circle the proposed Wabash well location.

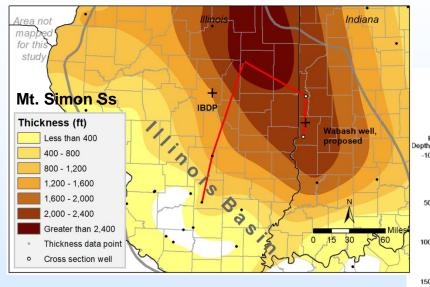

- Evaluate CO₂ stream/requirements, regulations, permitting; perform stakeholder analysis, further study WVR's business case for CO₂ storage
- Characterize geology at WVR site location for saline storage
- New data will inform static/dynamic models and risk assessment, reduce uncertainties

STRATIGRAPHIC COLUMN OF THE ILLINOIS BASIN

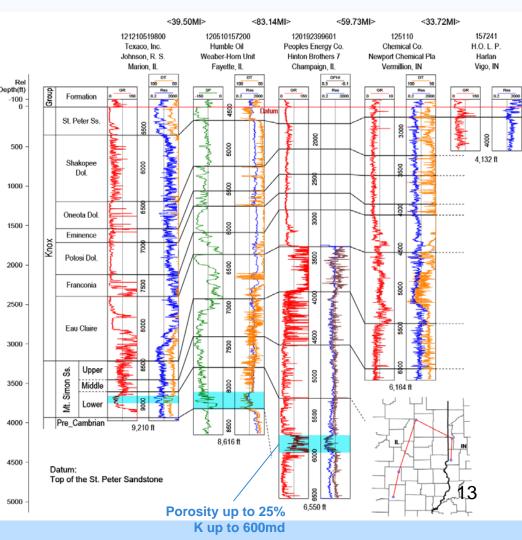
Pennsylvanian and carbonate NEW ALBANY **Tertiory Seal** Secondary Seal PLATTERILE IDENTIFE

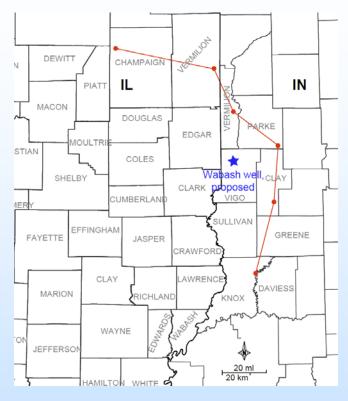
EAU CLAIRE

Storage Complex


- Wabash: Mt. Simon Sandstone reservoir, seals
- Lower Mt. Simon: IBDP/IL-ICCS CO₂ injection
- CarbonSAFE IL -Macon Co. work

Mt. Simon Storage Capacity: IL BASIN

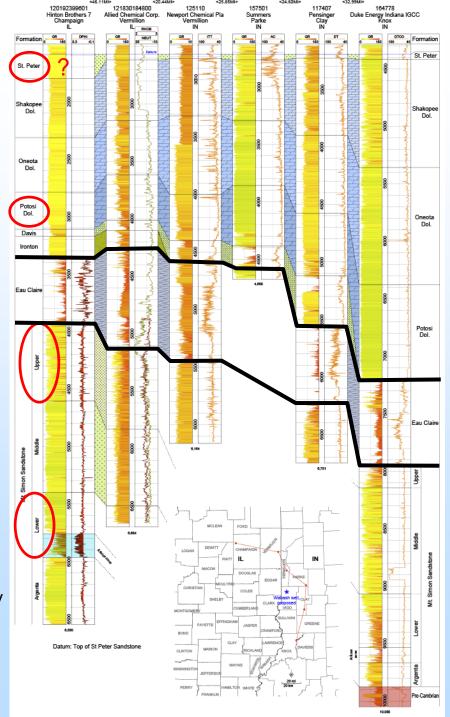

12 (E=0.4%) to 172 (E=5.5%) billion metric tons (2015)


Mt. Simon Sandstone

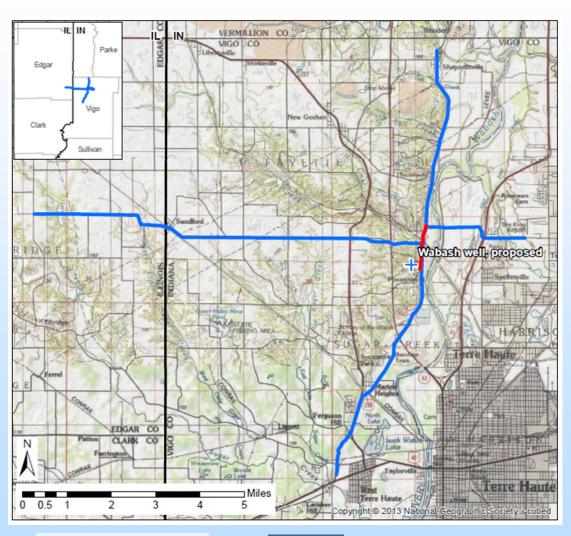
- Few complete Mt. Simon penetrations in ILB
- Regional thickness trend
- Zone of high porosity in Lower Mt.
 Simon seen in IL
- Wabash data gap: lower Mt. Simon reservoir quality uncertain...

Mt. Simon at Wabash

Nearest deep well(s) to Wabash:


75mi NW: lower Mt. Simon, zone of high porosity

22mi N: upper Mt. Simon only, disposal

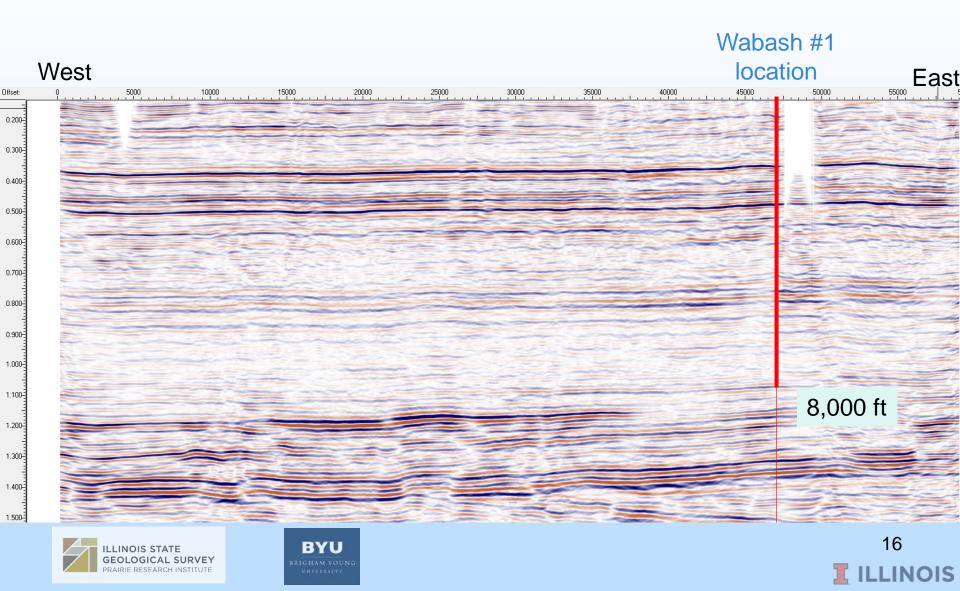

25mi SE: upper Mt. Simon

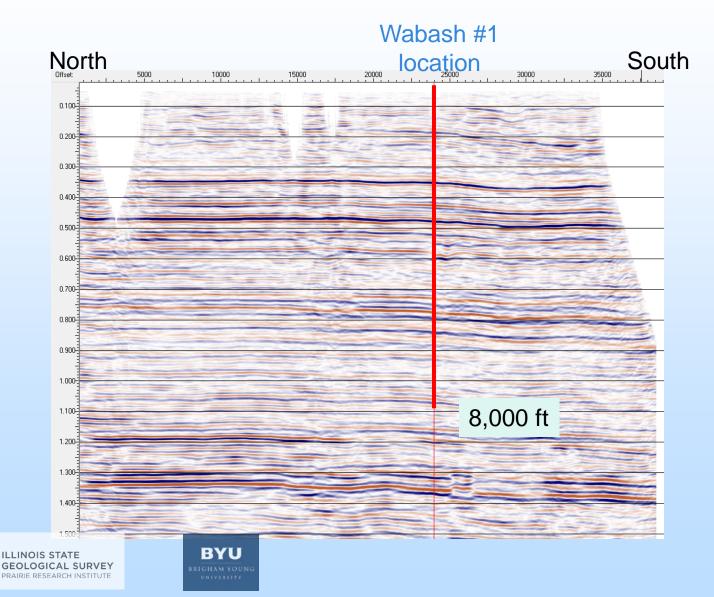
50mi S: lower Mt. Simon, deeper and lower porosity

Data collection necessary, characterization Fill data gaps, expand storage resource

New Data: 2D Seismic Acquisition

- Test line, 1mi (02/19/2019):
 - Mines, topo/streams, river
 - Test signal quality,
 synergy with Macon Co.
 - Preliminary deep reflectors
- 2 x 10 miles
 - Flooding delay...
 - Acquired 7/22-26
 - Synergy with IL East Sub-Basin
- Tie-in to well, site to region
 - Formation continuity,
 reservoir and seal
 - Geologic structures




Processed 2D Example (I)

Pre-interpretation

Processed 2D Example (II)

Pre-interpretation

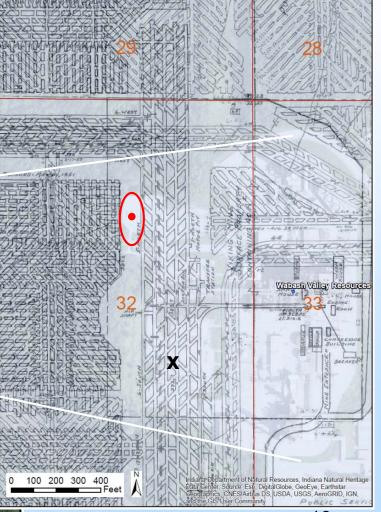
Stratigraphic Test Well

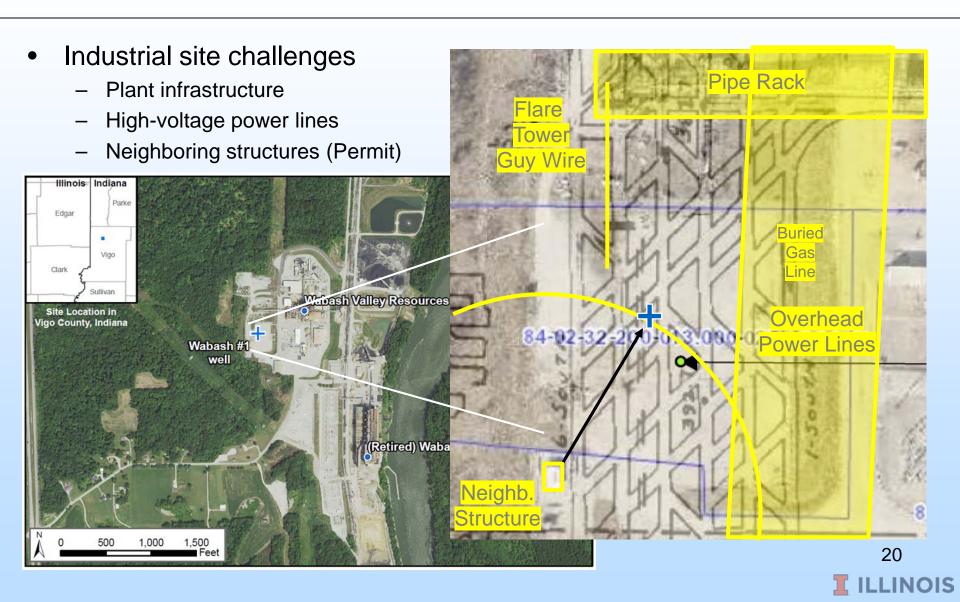
Preliminary Well Plan

- Drill to ~8,300-8,500 ft
 - Mt. Simon + Precambrian basement
- Whole core
 - Maquoketa Shale 60 ft
 - Eau Claire Upper Mt. Simon 120 ft
 - Lower Mt. Simon 180+ ft
- Sidewall cores in TD section
- Full suite of wireline log acquisition
- VSP
- Well testing, design based on drilling/logging outcome
 - DST/Sampling
 - Step Rate Tests
 - Pressure Falloff
 - Vertical Interference

Wabash #1 Wellbore Diagram

Well Name			Revision Date	Completion Fluid		Final MD (ft)
Wabash #1 Coordinates		N. Malkewicz	8/21/2019	TBD Wellhead		8500 RKB (ft)
	531626 Longitude: -87.427426			2 9/16" 5K		15
Section / Tou	wnship / Range			2 9/16 SK		GL (ft)
32 / 13N / 9W	M.					537
TVD	FORMATION TOPS MD		DRAWING NOT TO SCA	NOTES	CASING SIZE	HOLE SIZE
15'	MD		Surface			
			50.1000			_
					17-1/2°	13-3/8°
500'					-	
						I
						I
	Top of St. Louis LS					I
						I
1000						I
						I
						I
1500						I
1500						I
	Top of New Albany Sh					I
						I
2000						I
						I
=						I
						I
2500"	Top of Maquoketa Sh				12-1/4"	9-5/8"
						1
						I
-						I
3000.						I
						I
	Top of St. Peter SS					I
-						I
3500						I
						I
						I
4000						1
						1
						I
				Intermediate		1
4500				 String 		1
	Top of Potosi Do			Csg Packer & Stage Tool		I
				Stage 1001		I
						I
5000	Top of Eau Claire Sh					1
——"	Top of Eau Claire Sn					I
						I
5500				Long String Stage Tool		I
3300				Stage 1001	—	
					l	1
$\overline{}$						1
6000.					l	
1	Top of Mt. Simon SS					I
$\overline{}$					5-1/2"	8-1/2"
$\overline{}$					-4/2	3-1/2
6500						1
-						I
		I				1
					I	1
					1	
7000						
7000						
7000						
7000						
8000						
8000	PreCambrian					




Well Siting I

- Abandoned underground coal mines
 - Adjust planned location of stratigraphic well
 - Mine map georeferencing issues, section corner
 - Proximity to neighbor/property line...

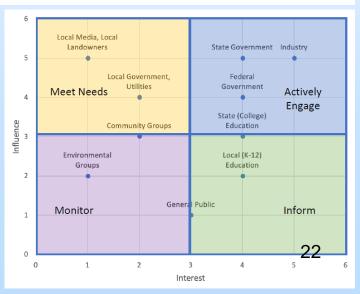
Well Siting II

Well Permitting/Status

Geologic / Structure Test (GST) well permit

No Indiana precedent for CO₂-related reservoir characterization

- Indiana Dept. of Nat. Resources (DNR), Div. of Oil & Gas
- Working with DNR on permit pathway, supporting information
 - CarbonSAFE test well is separate from WVR industrial project plan
 - Legislation enacted specific for WVR industrial pilot project
 - DNR review current CarbonSAFE needs, well/testing plan, timeline
- Current Well Status:
 - Well spot location surveyed 8/14
 - Completing Well Plan
 - Permit guidance -> completing application & supporting documentation
 - Anticipated spud date in October



Stakeholder Engagement

- Phase I work
 - Identified stakeholders, needs, searched social media
 - Mapped engagement types and priorities

Group	Local	State	Federal
-	 Templeton Coal Co., Inc. 		
	 Local Manufacturers¹ 		
Local	Private Homeowners		
Landowners	 Residents 		
	 Terre Haute Regional Hospital 		
	 Farmers 		
	 Business Landowners 		
	Union Hospital		
	Local Health Insurance		
Education	 St. Mary of the Woods College 	Rose Hulman Institute of	
(K-12, Colleges,	 Saint Patrick School 	Technology	
etc.)	 Vigo County Public Library 	Ivy Tech Terre Haute	
	 Vigo County School System 	Indiana State University	
	 Vigo County Extension Service 	Indiana University	
		Purdue University	
******		University of Notre Dame	
Utilities	Terre Haute Wastewater Utility	Duke Energy	Midcontinent Independent
	WIN Energy REMC	Vectren Corp.	System Operator
	Indiana-American Water Company	Indianapolis Power and Light	
	Nustar Pipeline Operating Partnership		
	Midwest Gas Transmission Co.		
	Buckeye Partners L.P.		
	Boardwalk Pipeline Partners BP		
	Marathon		
	Meridian Brick		
Media	Tribune-Star	Indy Star	
(Television,	News 10 – WTHI-TV	13 WTHR Indianapolis	
Radio.	WTWO-TV WAWV-TV	Rtv6 or WRTV	
Newspapers)	W1W0-1V WAWV-1V W250BZ (WIBQ-AM)	• Fox 59	
	· "530DE ("IDQ"MII)	- 10A37	

- Recommendations
 - Systematic way to implement social site characterization, monitor social media
 - Understand local/regional concerns:
 Some public concerns are location-specific:
 - Environmental legacy = Coal ash, coal mines
 - Land management, combined sewer & overflow

Stakeholder Engagement

- Local engagement, project-related
- Interaction with landowners

- Different opinions regarding project(s)
- Robust stakeholder engagement
 - Talk to + engage people who have opposing voices
 - Provide facts and information

Project Challenges

- CarbonSAFE Characteriation + WVR industrial project
 - IBDP → IL-ICCS sequential; CarbonSAFE / WVR in parallel
 - Underscores need for close communication between CarbonSAFE Team & WVR
 - Consistent messaging
 - Some WVR info may be confidential/business-sensitive
 - ISGS/IGWS maintain objectivity and remain trusted sources of information
- Well siting on WVR industrial property; permitting and timeline
- Lack of data (no Lower Mt. Simon penetrations within 50 miles):
 - Thickness/quality of reservoir? Contingencies?
 - Evaluation of multiple zones...
 - Where to take core? How much core? Costs?
 - What well testing to be done?

Project Summary

- Wabash CarbonSAFE Goal:
 - Assess commercial-scale CO₂ storage feasibility at Wabash Valley Resources' ammonia plant near Terre Haute, Indiana; CO₂ source and saline storage location.
- Accomplishments to Date
 - Acquire 2D seismic reflection data
 - Prepare stakeholder engagement materials, begin local engagement
 - Well site surveyed, well plan nearing completion, met with potential drillers
 - Dialogue with Indiana DNR, begin Geol. Struc. Test well permit application

Tasks/Partners

Task 1.0 – Project Management and Planning

Task 2.0 – Risk Assessment and Monitoring

Task 3.0 – National Risk Assessment Partnership (NRAP) Screening

Task 4.0 – Stakeholder Engagement and Public Outreach

Task 5.0 – Business and Economic Development Assessment

Task 6.0 – Permitting and Compliance

Task 7.0 – Subsurface Characterization

Task 8.0 – Drilling and Well Testing

Task 9.0 – Storage Complex Modeling

Task 10.0 – Infrastructure Development

Task 11.0 – Storage Complex Development Planning

Next Steps

Permit and drill test well / coring, logging, testing...

GEOSTOCK SANDIA

Interpret 2D seismic info, tie to well stratigraphy

- Integration of data: Modeling, NRAP
 - Pre-drilling work complete or in progress, to be updated
 - Informed by new well data, reduce uncertainties

Risk Assessments: pre-drilling; post-well modeling/simulation

Source Assessment, Storage Complex Development

- Consider saline at WVR; regional (poss. EOR, EGR, other plants, economics)
- Business and Economic Development Assessment
- Permitting and Compliance Needs Case Study

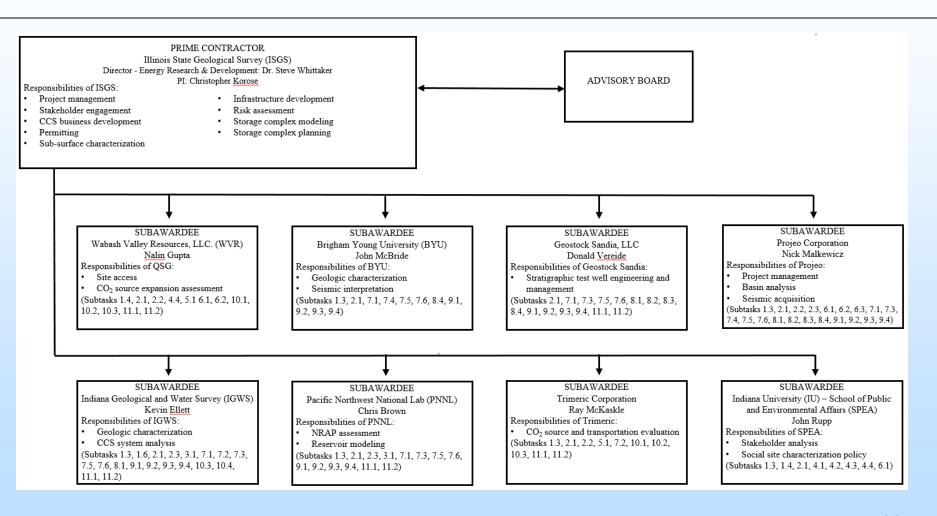
Thank You!

This project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL), under agreement DE-FE0031626.

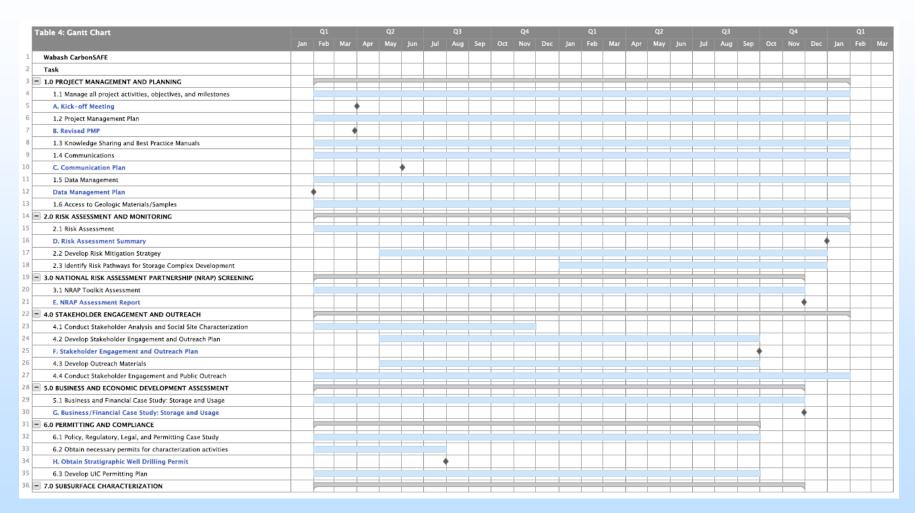
Appendix

 These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program (Phase II)

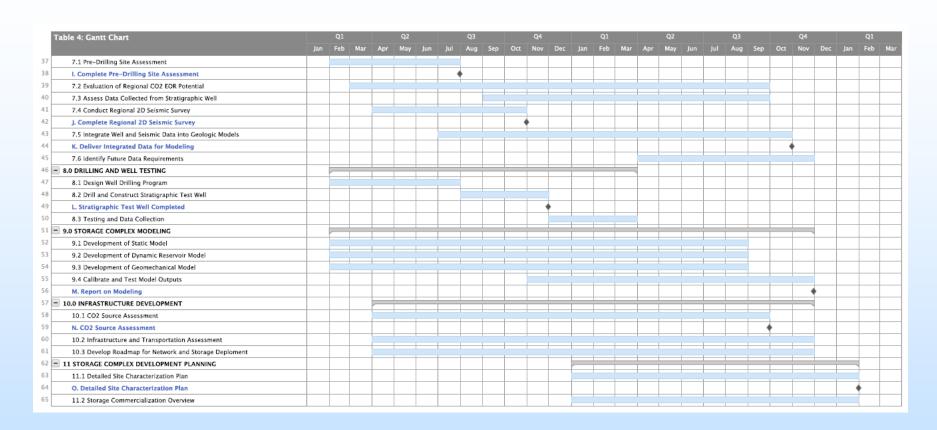

Benefits Statement, Wabash CarbonSAFE

This project will determine the feasibility of developing a commercial-scale CCS project capable of storing over 50 million tonnes of anthropogenic CO_2 in the U.S. Midwest. Wabash CarbonSAFE will demonstrate the transfer of technology to apply CCS to ammonia production thereby broadening the portfolio of industries that may benefit from integrating CCS into their operations. The project will address the development gap in upscaling CCS to commercial-scale as there are still are relatively few large carbon storage projects globally using deep saline reservoirs. Our work will address improving storage capacity estimates to attain an industry standard of $\pm 30\%$ or better for investment decisions. The data from this study will be used within the NRAP Toolkits to move toward validating technologies to ensure storage permanence and to improve reservoir storage efficiency. The project will determine the potential for transporting and utilizing CO_2 for EOR in oil fields of the Illinois Basin. The knowledge gained will contribute to greater development of regional CCS assets, best practice manuals about CCS technology, and issues that will be of broad use to other sites and future commercialization efforts.


Wabash CarbonSAFE Overview: Project Objectives and Program Goals

- Establish the feasibility of developing a commercial-scale geological storage complex near Terre Haute IN, that could store up to 50 million tonnes of industrially-sourced CO₂.
 - Address gap in knowledge around developing large-scale geological storage complexes
 - 1) Validate technologies to ensure 99% storage
 - 2) Validation of NRAP toolkits using field site data
 - 3) Improve storage capacity estimations for industry investment decision
 - 4) Contribute to best practice manuals to inform future commercialization efforts
- Address technical and non-technical questions around developing commercial-scale storage complexes.
 - Assess Public Outreach needs
 - Analyze Regulatory Issues
 - Characterize the Subsurface Storage Complex
 - Construct Storage Complex Model
 - Site Development Plan

Organization Chart (Phase II)



Phase II Project Schedule (1 of 2)

(continues)

Phase II Project Schedule (2 of 2)

Bibliography (Phase I)

Phase I Topical Reports (CarbonSAFE Illinois – East Sub-Basin):

Trabucchi, C., 2018. Summary of Carbon Storage Incentives and Potential Legislation: East Sub-Basin Project Subtask 3.1 Business and Financial Case Study, Topical Report: DOE/FE0029445-1. U.S Department of Energy.

Vinodkumar, P., O'Brien, K., and Korose, C., 2018. An assessment of potential CO₂ Sources throughout the Illinois Basin Subtask 5.1 – CO₂ Source Assessment, Topical Report: DOE/FE0029445-2. U.S Department of Energy.

Sexton, A, and McKaskle, R., 2018. Subtask 5.2 - Transportation and Infrastructure Assessment, Topical Report: DOE/FE0029445-3. U.S Department of Energy.

Korose, C., Rupp, J., and Greenberg, S., 2018. Policy, Regulatory, Legal, and Permitting Case Study Subtask 3.2 – Topical Report: DOE-FE0029445-4. U.S. Department of Energy.

Blakley, C., Carman, C., Garner, D., Damico, J., and Korose, C., 2018. Data Gap Assessment, Subtask 4.1, Topical Report: DOE/FE0029445-5. U.S. Department of Energy.

Carman, C., Damico, J., Blakley, C., White, S., Bacon, D., and Brown, C., 2018. An Assessment of the National Risk Assessment Program's CO₂ Sequestration Leakage Modeling Tools Topical Report: DOE/FE0029445-6. U.S. Department of Energy.

Medina, C., Ellett, K., and Rupp, J. 2019 Evaluation of Geologic Carbon Storage Resource Estimates (SREs) of Cambrian-Ordovician Units within the CarbonSAFE Prefeasibility Study Region, Topical Report: DOE-FE0029445-7 U.S. Department of Energy.

Greenberg, S., Korose, C., Need, Z., and Rupp, J., 2019. Stakeholder Analysis Report Subtask 3.3 CarbonSAFE Illinois East Sub-Basin, Topical Report: DOE/FE0029445-8. U.S Department of Energy.

Blakley, C., Carman, C., Monson, C., Freiburg, J., and Korose, C., 2019. Developing CO₂ Source and Storage Opportunities across the Illinois Basin Subtask 5.3 – Regional Roadmap for Source Network and Storage Deployment, Topical Report: DOE/FE0029445-9. U.S. Department of Energy

Blakley, C., Webb, N., Lasemi, Y., Askari, Z., Korose, C., Grigsby, N., and Carman, C., 2019. A Summary of CO₂-Enhanced Oil Recovery Options in the Illinois East Sub-Basin. Topical Report: DOE-FE0029445-10 U.S. Department of Energy.

Medina, C., Rupp, J., Lahann, R., and Eldridge, J., 2019 Evaluation of Caprock Integrity of the Upper Ordovician Units within the CarbonSAFE Prefeasibility Study Region, Topical Report: DOE-FE0029445-11. U.S. Department of Energy.