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Project Overview: Objectives

Objectives

1. Develop robust urea hydrolysis-based mineral
precipitation strategies for mitigating wellbore leakage.

2. Assess the resistance of precipitated mineral seals to
challenges with CO,, and brine.

3. Refine the existing Stuttgart Biomineralization Model to
predict mineral precipitation resulting from advanced
mineral precipitation strategies.

4. Perform field validation of the most appropriate mineral
sealing technology in a well.
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Mineralization o B

(NH,),CO + 2H,0 + Ca** — 2NH,* + CaCO,

 The enzyme urease hydrolyzes
urea to form ammonium and
carbonates, which increases
alkalinity

 Thermal hydrolysis of urea can
result in the same chemistry

 In the presence of Ca?*,
saturation can be exceeded and
calcium carbonate (calcite)
precipitates
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Objective 1. Develop robust urea hydrolysis-based mineral precipitation
strategies for mitigating wellbore leakage.

Experiments to date:

« Kinetics of urea hydrolysis under temperature, pressure and
chemical conditions congruent with subsurface applications

 Enzyme inactivation rates
* Develop injection strategies to control mineral precipitation
e Seal core

* Immobilization of enzyme to protect from denaturation
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JB Urea Hydrolysis between 20-80°C ¢ Fast JB urea hydrolysis at
25 60°C
e <60°C=longerto
hydrolyze
e >60°C=thermal
inactivation of

enzyme
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Marnie Feder, Adrienne Phillips, Vincent Morasko, Robin Gerlach (In
Prep) Plant-based ureolysis kinetics and urease inactivation at elevated
temperatures for use in engineered mineralization applications




INACTIVATION MODELING

First Order Inactivation
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IMMOBILIZATION

Enzyme activity down after 60°C due to thermal inactivation
Thermal ureolysis beyond 100-110°C

Fill the gap

Immobilization?

MICP/ EICP
TICP

60°C 100°C
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Ludox® colloidal silica gel used.
JB become trapped in polymer matrix.

Gel becomes enzymatically active.

5 9" Silicon dioxide particles

e — o O iy s . .
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The first order thermal inactivation rate constant (k) for
Immobilized enzyme is lower than free enzyme- protection
from degradation.
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Summary: Objective 1
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Made significant progress- laboratory studies in batch and
In core.
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Objective 2: Assess the resistance of precipitated mineral seals to
challenges with CO, and brine.

16




CO, EXPERIMENT

1lin. X 2in. sandstone and cement core
Soaked core with CO, saturated brine
Mineralization pulses

Challenged core with CO, saturated
brine

Scanned the core with X-ray-CT and
NMR rock core analyzer

— pre-mineralization
— post-mineralization
— post- mineralization CO, challenge
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Sample Porosity Volume
NMR and CT (Liquid)
Pre-mineralization 13.3% 3.5 mL
Post- 7.0% 1.9 mL
mineralization
Post CO, challenge 7.4% 20 mL
Pre-Mineralization Post-Mineralization Post CO,

Ryanne Daily, Linn Thrane, Sarah Codd, Olivia Firth
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Obijective 3. Refine the existing Stuttgart Biomineralization

Model to predict mineral precipitation resulting from advanced

mineral precipitation strategies. Universitat
Stuttgart

Model to date: Update code to utilize kinetic
parameters- enzyme inactivation and TICP

- caleium |mmob| urease
- carbonate * X
. ) attached be mea/

G\ =

precipitation L
. : (dISSO|UtI§I) e . e
\ calcj

Ebigbo A.; et al.(2012): Darcy-scale modeling of microbially induced
carbonate mineral precipitation in sand columns. Water Resources
Research. 48, W07519, doi:10.1029/2011WR011714.

Hommel, J.; et al. (2015): A revised model for microbially induced
calcite precipitation - improvements and new insights based on
recent experiments. Water Resources Research. 51(5):3695-3715.
doi:10.1002/2014WR016503



http://onlinelibrary.wiley.com/doi/10.1029/2011WR011714/pdf
http://onlinelibrary.wiley.com/doi/10.1002/2014WR016503/abstract
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Objective 4. Perform field validation of the most appropriate
mineral sealing technology (EICP) in a well.

Gorgas, Alabama Dec. 2018

EICP

(heat treated cells-only enzyme) ,’:':?"
!

Added CO,

(sodium bicarbonate + HCI)

Sampled

(geochemistry and microbiology)
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Sampling downhole fluids- before, after addition of HCI and sodium bicarbonate to
generate acidic conditions and CO,, mid EICP, and at the end of the EICP
treatment — geochemistry and microbial ecology

Dr. Catherine Kirkland, Montana
Emergent Technologies, Loudon
Technical Services, Arda Akyel

Dr. Djuna Gulliver, NETL
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Logged the well before and after EICP treatment to assess efficacy of sealing
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| essons Learned

Mineralization can be expanded to higher
temperature applications

Understand kinetics of reactions and how mineral
forms

Scaling up the processes for field application

Addition of CO, to the well by chemical means
(formation Iin situ)

Heat treating cells but enzyme remains active
Sealing was accomplished in the presence of CO,

24
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« Additional R&D projects:

Methods to Enhance Wellbore Cement Integrity with
Microbially-Induced Calcite Precipitation (MICP)- Montana State
University DE-FE0024296

» Possible synergies with other NETL & FE projects, e.qg.

Programmable Sealant-Loaded Mesoporous Nanoparticles for
Gas/Liquid Leakage Mitigation - C-Crete Technologies, LLC — Rice
University, Rouzbah Shasavari (DE-FE0026511)

Nanoparticle Injection Technology for Remediating Leaks of CO,
Storage Formation, University of Colorado Boulder, Yunping Xi

Bill Carey (LANL) - Wellbore and Seal Integrity
Others

25
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Mesoscale high pressure vessel for scale up work — radial
flow, samples up to ~70 cm diameter, ~50 cm height

Phillips, AJ, Eldring, J, Hiebert, R, Lauchnor, E, Mitchell, AC, Gerlach, R, Cunningham, A, and Spangler, L. High pressure
test vessel for the examination of biogeochemical processes. J. Petrol. Sci. Eng. 126, February 2015:55-62, DOI:

5/1.petrol.2014.12.008
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http://www.sciencedirect.com/science/article/pii/S0920410514004136

SUMMARY & FUTURE

Summary

= JB urease kinetics and inactivation

= Thermal hydrolysis of urea > 80°C (100°C)
= Model updates

= Field experiment

Future EICP and TICP

= Mineralization strength (TICP or EICP)
= Extraction of enzyme from cell

= Field: mineral seal characterization and well plugging
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Accomplishments: Objective 4

Geochemistry and microbiology

Relative Abundance of Subsurface Taxa in Gorgas Field, AL
Simulated GCS Site
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Appendix

— These slides will not be discussed during the presentation, but
are mandatory.
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Benefit to the Program

 Program Goal Addressed:

— (1) Develop and validate technologies to ensure 99
percent storage permanence;

— “Develop and/or field-validate next-generation
materials or methods for preventing or mitigating
wellbore leakage in existing wells under a variety of
pressure, temperature, and chemical conditions, and
In the presence of CO,-saturated brine.”

30



Benefit to the Program

The mineralization technologies proposed here use low
viscosity fluids to promote sealing. This allows flow
through small apertures, narrow leakage channels, and
through porous media allowing sealing of fracture
networks, mechanical components, cement gaps, and
potentially the rock formation surrounding the wellbore.

— Active enzyme as the catalyst as well as direct thermal
hydrolysis of urea drive mineralization precipitation
developing engineered mineralization sealing at
greater depths and higher temperatures to address
the FOA requirement to “prevent or remediate detected
leaks in complicated environments under a variety of
pressure, temperature, and chemical conditions”.

31



Project Overview: Goals and Objectives

Objectives

1.

2.

Develop robust urea hydrolysis-based mineral
precipitation strategies for mitigating wellbore leakage.

Assess the resistance of precipitated mineral seals to
challenges with CO,, and brine.

Refine the existing Stuttgart Biomineralization Model to
predict mineral precipitation resulting from advanced
mineral precipitation strategies.

Perform field validation of the most appropriate mineral
sealing technology in a well.

32



Organization Chart

Energy Research Institute
Director: Lee Spangler
Overall project coordination

Communication with MSU and DOE/NETL

Pl: Adie

reporting

Phillips

Responsible for all technical, management, and

activities

Co-Investigator
Al Cunningham
Laboratory testing
Coordination between
MSU and MET

Co-Investigator
Robin Gerlach
Laboratory testing
Simulation modeling
Report preparation
Publication of results

University of Stuttgart
Rainer Helmig
Laboratory testing
Simulation model
development and
application

Montana Emergent Technologies
Randy Hiebert
Primary Subcontract Laboratory testing
Coordinate field activity contracts
Participate in Field demo (mineralization)

Loudon Tech Services -
Jim Kirksey
Coordination of all
downhole activities
Site Characterization
Report Preparation

Sclumberger
Logging and other
wellside services

Communications

Reporting

Fiscal Administration
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Gantt Chart
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1.0 Project M 1ent and Planning
Milestone 1 Updated Management Plan
Milestone 2 Kickoff Meeting

RO

2.0 Laboratory investigation to develop and evaluate enhanced mineral sealing
Milestone 3 Complete modification of the high pressure systems @
Milestone 5 Complete development of field test protocol @
Milestone 6 Complete field test @
2.1 Develop and test laboratory systems for performing mineral sealing
experiments

2.2 Develop protocols for forming mineral seals in rock cores
2.3 Assess the resistance of precipitated mineral seals to challenges with
supercritical CO2-saturated brine

3.0 Refine the existing Stuttgart Biomineralization Model to predict mineral
precipitation resulting from alternative mineral precipitation strategies

3.1 Modify the existing code to simulate mineral precipitation

3.2 Use the model to make field predictions of mineralization sealing scenarios at
the Danielson well site

4.0 Perform field test and evaluation of appropriate mineral sealing technology at
the Danielson sell site

Milestone 4 Complete well characterization and preparation @
Milestone 7 Conduct field test to evaluate mineralization seal @
Milestone 8 Complete evaluation of all field and laboratory test results
4.1 Conduct initial field characterization activities at the Danielson well site

4.2 Design the field injection strategy based on laboratory results and simulation
4.3 Perform mineralization sealing test at the Danielson well and evaluate results
4.4 Evaluate the integrity of the mineralization seal
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MICP to EICP Model
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Mineralization Technology M B
Application
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Approx.
Temperature Range

Urea Hydrolysis
Mechanism

Typical Depth
feet and (m)

20-45°C

30-80°C

90-140°C

68-113°F

86-158°F

194-284°F

Microbes (MICP)

Enzyme (EICP)

Thermal hydrolysis
(TICP)

Less than 3,000 (<914 m)

Less than 6,500 (<1,981 m)

8,000 to 13,000 (2,438 to 3,962 m)
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Kinetics of ureolysis- JBM
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2) Heat kill system using stainless steel coils and heated water
3) Used those heat killed cells and nutrients (urea calcium solutions) to promote mineralization
in the wellbore channel
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IMMOBILIZATION- HALF LIFE
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