

Marcellus Shale Energy and Environmental Laboratory (MSEEL) Project Number (FE-0024297)

Timothy Carr West Virginia University

U.S. Department of Energy

National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 26-30, 2019

Project Objectives

MARCELLUS SHALE ENERGY AND ENVIRONMENT LABORATORY MSEEL

The objective of the Marcellus Shale Energy and Environment Laboratory (MSEEL) is to provide a long-term collaborative field site to develop and validate new knowledge and technology to improve recovery efficiency and minimize environmental implications of unconventional resource development

Outline

- Overview of MSEEL Project
- History
- MIP 3H Well Completion
- The Importance of Logging the Lateral
- Fractures
- Geomechanical Properties
- Fiber Optic Data
- Distributed Acoustic Data (DAS)
- Distributed Temperature Data (DTS)
- Long-Term Reservoir Monitoring by DTS:
- Snap-shot of production at one time
- Engineered stages improve production efficiency
- MSEEL 2
- Cost Effective Data
- Actionable Data (Near Real-Time)
- Underway
- Plans
- Initial Results

MSEEL MIP Site

Geologic Background

101800 Yaxis

01400.

Microseismic

Thomas Wilson - WVU

Logging Lateral MIP-3H

Geomechanical Logs 3H Vertical Pilot

9

Engineered Stages Fiber-Optic Data DAS & DTS

Challenges

- Expense
- Borehole Risk
- Data Overload (Big Data)
 Volume, Velocity, Variety, Veracity
- Benefits
- Improved Stimulation Efficiency
- Improved Production Efficiency
- Don't have the solution, but progress
- Lower Costs
- Decrease Time
- Increase Production

MIP 3H Gas Production – mcf/ft

Engineered design using data obtained during MSEEL has ~20% increased production compared to standard NNE completion techniques EUR for future wells could be ~10-20% greater *IF* we can exploit the technologic advantages gained through MSEEL in a more cost-effective fashion

Fiber-Optics Distributed Acoustic Sensing (DAS) & Distributed Temperature Sensing (DTS)

Courtesy of Silixia Ltd., UK

Courtesy of Silixia Ltd., UK

Courtesy of Mishra et al., 2017

DAS, DTS and Terabytes Oh My – 🗆 X quake DTS of Production Dint Dar antalan Y-Axis Controls Depth

FIBRO

FIBRO Payam Kavousi Ghahfarokhi

Per Type

55.00

Section B (Stage 10) - Geometric

- **Design Parameters:**
- 5 clusters, 5spf, 50 holes, 0.42", 100 bpm
- Perforation friction ~ 1120 psi
- In-situ stress contrast ~ 393 psi
- BD pressure contrast ~299 psi

- DTS show cooling effect on all clusters
- hDVS show intermittent energy on all clusters
- Clusters 1,2,5 seem to breakdown initially based on hDVS
- 60% match between predicted and actual breakdown

Section B (Stage 10) - Geometric

Courtesy of Schlumberger

DAS and DTS Stage 10 Stimulation

Time

PROP CON (lbm/gal)

SLUR RATE (bbl/min)

TR PRES (PSI)

EH PROP CON (Ibm/gal)

Events Count Event Rate

Stage 10 Geometric

Stage 10 Geometric

Section C (Stage 14) – Engineered

Design Parameters:

- 5 clusters, 3spf, 30 holes, 0.42", 100bpm
- Perforation friction ~ 3000 psi
- In-situ stress contrast ~ 294 psi
- BD pressure contrast ~ 242 psi

- DTS show cooling effect on all clusters
- hDVS show more uniform energy on all clusters
- All clusters seem to breakdown initially based on hDVS
- 100% match between predicted and actual breakdown

Section C (Stage 14) Engineered and Limited Entry

Courtesy of Schlumberger

Section C (Stage 14) Engineered

Section C (Stage 14) Engineered

Cross-Stage Flow Communication

3H Lateral

N32E

Shmin $\mathrm{Sh}_{\mathrm{max}}$ Temperature increase N85E in previous stage(s) Optimally, critically oriented in stress field, Not critically oriented in results in "fast" slip stress field, results in "slow" with high frequency slip with low frequency microseismic seismic expression typically expression missed during microseismic monitoring

DAS and Geophone Spectrograms

Long-Term DTS Monitoring

De-Trended DTS

De-Trended DTS

Modeling Sequence

DTS Prediction Model (Random Forest) • Inputs: Geomechanical parameters from sonic log completion parameters such as treatment rate, proppant concentration, stage length, etc., along with operational conditions (e.g. Line Pressure and offset well (MIP-5H) Line Pressure)

Daily Gas Production

Gas Production Model (Neural Network) • Inputs: DTS data for the 28 stages

This approach provides a composite that connects completion data, operational data, and geomechanical data to surface daily gas production.

DTS Model

27

Predicted DTS vs. Measured DTS for Test Dataset 172 R2=0.94 170 Predicted Temperature(degF) 168 -166 164 -162 -162 166 170 172 160 164 168 174 Actual Temperature(degF)

Random Forest Regressor predicted DTS data with a high accuracy

West Virginia University,

DTS Modeling

We recovered missing data in late 2017. Modeled DTS is slightly overestimated.

 A model is built to use completion data, geomechanical data, and operational condition to predict daily average temperature for each of the 28 stages.

Neural Network

Input Layer

Output

Output Layer

Multi-layer Perceptron

Hidden Layer

Neural Network Gas Production Model

History matching result of the built neural network model.

Sensitivity Analysis

DTS attributes:

The effect of each DTS

production is evaluated.

attribute on gas

- Days since completion
- Line pressure of MIP-3H
- Line pressure of the offset well (MIP-3H)
- Distance of each stage center to the toe of the well
- Each stage TVD median
- Each stage TVD mean
- Number of shots per foot for each stage

DTS Traces at Two Different Rates

MSEEL Phase 3 MSEEL-2 Wells

□ Continued Testing on MIP3

- Continued DTS Monitoring
- Temporary DAS Coupled with Pressure Transients to Develop Continuous Production Log
- Work with LANL
- □ MSEEL 2 Boggess Pad
- Vertical Pilot Hole
- 6 Laterals

MSEEL Phase 3 MSEEL-2 Wells

"How can one leverage this improved understanding gained through MSEEL to drill better wells?"

- More gas extracted, minimal risk, similar/lower costs
- Test next generation cost-effective technologies in an area with previous drilling to determine feasibility of applying lessons learned on an "every well" basis to determine if we can get more gas from each well
- Work toward real-time intervention and modification during stimulation
- Improved Fracture Characterization
 - Natural and Induced
 - Unconventional Fracture Modeling

MSEEL-2 Wells

★ Permanent Fiber

☆ Intervention Fiber

- Advanced Fiber
- Distributed acoustic and distributed temperature sensing data acquisition.
- Actionable Information During Stimulation.
- Microseismic and Active Proppant Monitoring
- Long term Monitoring with Permanent Fiber

MSEEL 2 Pilot

Vertical Pilot Hole

- Core and Sidewall Cores
- Core with FractureID
- Complete Log Suite
- □ MSEEL 2 Tie to Vertical
- Develop algorithms to efficiently incorporate thin lowcost data during the drilling process (e.g., LWD geomechanics).
- Engineer Completions

MSEEL-2 Wells

All Six Laterals
Tie to Vertical Pilot
FractureID
Petromar FracView
Active Proppant

Open Fracture

YOUNG'S MODULUS

MSEEL-2 Wells Fracture Data

Fracture density along the wellbore – Boggess-3H (Horizontal view)

Fracture Type	#
Low amplitude fractures	1580
High amplitude fractures	133
Open fractures	14
Fault	5
Total	1732

MSEEL-2 DAS Data

West Virginia University.

MSEEL-2 DAS Data

Stage 10

MSEEL-2 Microseismic

This research is funded by a grant from Department of Energy's National Energy Technology Laboratory (DE- FE0024297)

