Midwest Regional Carbon Sequestration Partnership DOE/NETL cooperative agreement # DE-FC26-05NT42589

Neeraj Gupta Battelle Memorial Institute

U.S. Department of Energy National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 26-30, 2019

Presentation Outline

- Introduction
- Technical Status
 - Monitoring/Modeling
 - Accounting/LCA
 - Regional Impact
- Summary
 - Accomplishments
 - Lessons learned
 - Synergy Opportunities

Acknowledgements

Battelle's MRCSP Current Contributors – Mark Kelley, Srikanta Mishra, Matt Place, Lydia Cumming, Sanjay Mawalkar, Charlotte Sullivan, Priya Ravi Ganesh, Autumn Haagsma, Samin Raziperchikolaee, Amber Conner, Glen Larsen, Joel Main, Isis Fukai, Ashwin Pasumarti, Manoj Kumar Valluri, Laura Keister, Andrew Burchwell, Rebecca Wessinger, Jackie Gerst, and others

DOE/NETL – Agreement # DE-FC26-0NT42589, Andrea McNemar (PM)

Core Energy, LLC – Bob Mannes, Rick Pardini, Allen Modroo, Bob Tipsword, Kim Sanders, Kathy Dungey, and several others

Ohio Development Services Agency's Ohio Coal Development Office

MRCSP's technical partners, sponsors, and host sites since 2003

The MRCSP Region's State Geology Survey and University team members

Historical Snapshot of MRCSP – 16 Years of CCUS Innovation

DOE-funded regional partnerships to develop infrastructure for wide-scale CO₂ sequestration deployment

MRCSP Basin Large-Scale Injection

- Objective Inject/monitor +1 million metric tons of CO₂ in collaboration with EOR operations.
- Evaluate CO₂ injectivity, migration, containment
- Evaluate regional storage resources
- Outreach and knowledge sharet

Large-scale Injection Test

Key Reefs Vary in Setting and Operational History

Late-Stage Reef: Dover 33

1 Lobe Operational since 1974 Primary + CO_2 -EOR MRCSP Injection since 2013 1 CO_2 Injection Wells 2(+1) Mon./ Prod. Wells

2 Lobes Operational since 1971 Primary + Water Inj. MRCSP Injection since 2017 1 CO₂ Injection Well 1 Monitoring Well

Charlton 19

2 Lobes Operational since 1988 Primary Production MRCSP Injection 2015-2017 1 CO₂ Injection Wells 2 Monitoring Wells Currently in CO₂-EOR

Bagley

Chester 16

4 Lobes

Operational since 1973 Primary Production only MRCSP Injection since 2015

3 CO₂ Injection Wells 4 Monitoring Wells

MRCSP Monitoring Program

- 10 reefs in various stages of EOR
- All Reefs CO₂ accounting and reservoir pressure
- Advanced monitoring on selected reefs

8

Objective-Based Monitoring Portfolio

Monitoring Technology	Injection Accounting	Leak Detection/ well integrity	CO ₂ plume tracking	Induced seismicity /uplift
CO ₂ injection rate	Х		Х	
Reservoir Pressure		Х	Х	
Temperature (DTS)		Х	Х	
PNC logging		Х	Х	
Borehole gravity			Х	
Reservoir Geochemistry			Х	
Vertical seismic profile (VSP)		Х	Х	
Microseismic				Х
InSAR (Satellite radar)				Х

Modeling and Analyses

Reservoir properties and performance from CO₂ injection data

Static and dynamic modeling

Integrate G&G data; constrain reservoir properties; evaluate reservoir performance for future scenarios

Dover-33; Chester-16; Bagley; Charlton-19

Capacitance-resistance modeling

Simplified estimation of reservoir capacity and injectivity; simplified analysis of future scenarios
Charlton-19; Bagley

Transient pressure and rate analysis

Estimate reservoir properties; synthesize results from multiple types of analysis; validate dynamic model
Dover-33; Bagley; Chester-16; Charlton-19

The Late State Reef Offered a Unique Opportunity to Collect and Analyze data at Various Stages in the Lifecycle

Dover 33 Microseismic Deeper Dive Two Types of Events Detected

"DISTRIBUTED?"

Dover 33 Microseismic Study Deeper Dive

- Worked with NORSAR to reprocess data from 21-day repeat event
- unsupervised learning/ clustering used to classify ~200,000 events into three types
- Despite large number of events, no evidence for real microseismic events caused by CO₂ injection even though reservoir pressure was at discovery pressure.

- Type 1 (77%) related to surface activities/noise.
- Type 2 are small signals, with high frequency and lack of low frequencies and with unusually long duration – likely noise caused by resonance issues of the sensors.
- Type 3 have frequency content in the range from 20 to 200 Hz however atypical waveform characteristics do not point to real microseismicity

Evolution of the Modeling Approach for Improved Geologic Representation (Dover-33)

14

Late Stage Reef (Dover-33) - History Match to CO₂ Injection Data

Transient Pressure and Rate Analyses for Permeability Estimation (Dover-33)

- Injection-falloff analysis (using IHS WELLTEST)
- Injectivity (1-33) + productivity (9-33) analysis (flowing material balance) $J = q/\Delta p \sim kh$
- 100000 Reference_rel perm ▲ Case A_rel perm Case B rel perm Field data 10000 J, Mt/yr/psi 0001 Synthetic model data 100 10 1000 100 10000 100000 1000000 $(k_{R}h_{R}), mD.ft$

Welltest = $k \sim 2-15 \text{ mD}$

 $J_{inj} = k \sim 9-18 \text{ mD}$

$$J_{prod} = k \sim 5-11 \text{ mD}$$

 Synthesis of permeability estimates

Chester 16 Reef used to Test New Technology and Methods

Temperature Monitoring Methods

DTS – Real-time, fiber-optic data
Five Behind-casing Temperature (and pressure) sensors (gauges)
Memory gauges inside injection tubing at reservoir depth

Chester 16 Reef

- DTS
- 2 Memory gauges inside injection tubing
- DTS
- 5 permanent discrete depth gauges

Discerning CO₂ Flow Zones with DTS Warm-back Maps for CO₂ Intake Zones

Discerning CO_2 Migration with DTS CO_2 Moves to the top of reef in Obs. Well

20

Chester 16 Borehole Seismic Monitoring

DAS VSP

- Glacial till, carbonate rocks, lack of cement pose significant challenges
- Dynamite data too noisy to combine with vibroseis – limited areal coverage
- Extensive processing and modeling performed
- Results show partial CO₂
 "plume" consistent with other monitoring

Cross-well Seismic

- Novel processing workflow to compensate for lack of baseline
- Full waveform inversion used for velocity tomograms – first time for Schlumberger
- Results are plausible but not without some ambiguity.

Evaluating Configurations to Improve CO₂ Injectivity

- Increasing the number of perforations provides only marginal improvement
- Drilling radial "tunnels" is more effective; performs similar to a horizontal well

Radial Tunnels are small open boreholes drilled laterally from existing well

Injectivity with Radial Tunnels

However, radial tunnels drilling was not successful in the field

Co-optimizing oil recovery and CO₂ storage

Oil Production and CO₂ Storage from EOR

Simulating 10 Configurations to Optimize Production and CO₂ Storage. **Strategy #9 maximizes both CO₂ Stored and Oil Recovery**

Scenario 3 (Convert monitoring well to Injection) implemented

Perforating in fiber-optic wells a key challenge

New EOR Reef (Bagley) – Monitoring in a Complex Reef

New Reef (Bagley) - History Match to Primary Production and CO₂ Injection Data

Primary production

> CO₂ injection

New EOR (Charlton 19) – Testing Simplified Modeling

26

Application of Capacitance Resistance Model (CRM) to Estimate Reservoir Capacity and Injectivity (Charlton-19)

- Simplified (tank) model with two parameters
 - Total compressibility * Pore volume, C_t.PV
 - Injectivity index, $J = q/\Delta p$
- Applied to many waterflooding project
- Here, first application for history matching to CO₂ injection data
- Allows rapid prediction of pressure buildup for given injection rate (& vice versa)

Mass Balance Accounting Methods

- Bulk of injection, production and recycling flows measured by Coriolis flow meters – mass basis
- Low-pressure separators use vortex meters volume basis
- Vented gas measured by orifice plate meters volume basis
- Aggregate meters at Chester 10 Facility and at combined recycle gas after compression
- Plant Human-Machine Interfaces (HMIs) computer system

Net Stored
$$CO_{2 Reef} = Injected CO_{2 Reef} - Produced CO_{2 Reef}$$

Net Stored
$$CO_{2 EOR Complex} = \sum_{\text{Reef}=1}^{10} \text{Net Stored } CO_{2, Reef}$$

$$CO_2 = CO_{2I} - CO_{2P} - CO_{2E} - CO_{2FI} - CO_{2FF}$$

Equation RR-11 for EPA GHG Reporting

*Emerson Coriolis Mass Flow Meters

CO₂-EOR Complex & Central Production Facility

- Chester 10 facility provides pure CO₂
- ~80 miles of pipeline network
- 9 reefs interconnected at Dover 36 Facility
- 5 high and 12 low pressure separators
- Recycle/booster compressors
- Coriolis mass flow metering at all critical locations

Net CO₂ Stored over MRCSP Monitoring >1.45Million MT Storage till June 2019

Net in Reef CO2 (MT)

Monitoring, Reporting & Verification (MRV) Plan Approved by EPA

ed

Date Initiat
1996
1996
2004
2006
2008
2009
2011
2015
2015
2017

MRV Plan (Subpart RR, EPA):

- Project Description
- Delineation of Active & Maximum Monitoring Area
- Evaluation of Leakage Pathways
- Monitoring Baselines
- EPA Mass Balance Equations

CCUS.LP 45Q Tax Equity Partnership Formed by Core

Results- Total LCA results 1996-2017

Development of a Reef Atlas

Regional Scale up to Entire NNPRT

- Regional reef atlas used to estimate CO₂ resources and \bullet EOR potential
- > 250 million metric tons of storage possible
- >100 million STB oil recoverable via CO₂-EOR

;{,`****|]]]

Regional Characterization– Demonstrate Geological Storage Potential

- Establish fundamentals for CO₂ storage within the ten-state region and to qualify what volumes, how and where
 - Assess the potential reservoirs and seals in the region, including offshore
 - Determine the type of storage (saline, EOR or EGR reservoirs)
 - Quantify the potential storage resources
 - Generate products essential for siting, performance modeling, MVA

Series of reports under preparation

Storage resource estimate map

Regional cross section

MRCSP Outreach

Sharing Lessons Learned to Foster CCUS Development

Factsheets and BPMs

Message Mapping

www.mrcsp.org
MRCSP Outreach

FY2019 Highlights

- Highly attended MRCSP Annual Meeting in Annapolis, MD
- Participated in major conferences and workshops
 - GHGT-14
 - AAPG ACE and AAPG ES
 - CMTC
 - AGU
 - AICHE
 - IEAGHG
- Provided input into Permitting and Standards
 - DOE/EPA UIC meeting about permitting under MRCSP and related projects.
 - International Standards Organization (ISO) meetings
 - SPE SRMS System and Guidance Document
- Major emphasis on Peer-Reviewed papers in the final year
- Multiple volumes of reports under preparation for release in 2020

MRCSP Outreach – Final Meeting

2019 MRCSP ANNUAL MEETING

A Glimpse of the Future – Regional Initiatives! Naming Rights still available!

- Decarbonization Initiative for the Midwest and Eastern Region (DIMER)
- Industrial CARbon Utilization and Storage (ICARUS) Initiative³
- Carbon Initiative of the Northeast and Midwest and Atlantic (CINEMA)[©]
- Laurentia Industrial Carbon Initiative!

Joint Proposal with Illinois State Geological Survey / MGSC

Source Type	2017 Emission (MMt)	% of Total
Power Plant	694	73%
Metals	72.5	8%
Minerals	44.4	5%
Chemicals	38.3	4%
Petroleum, Natural		
Gas, and Refineries	28.4	3%
Other	28.0	3%
Ethanol	16.9	2%
Pulp and Paper	10.7	1%
Waste	7.9	1%
Manufacturing	3.5	<1%
TOTAL	945	-

Synergy Opportunities

- Growing commercial CCUS Practice under 45Q/LCFS Regime
- Southern Michigan Advanced CO₂-EOR (FOA1988)
- Geomechanical Stress Assessment (FOA1829)
- CarbonSafe Phase I (Ohio, Michigan, Nebraska) and Phase II (Nebraska, Kansas) projects
- Mid-Atlantic Offshore storage assessment
- Well integrity and risk management
- Brine disposal and induced seismicity research
- Knowledge share with RCSPs on monitoring and modeling
- Testing NRAP models and CO₂ Screen tools
- International projects South Africa, China, Mexico, Indonesia, Spain
- IEAGHG monitoring/Modeling Networks
- DOE Best Practices Manuals

MRCSP Related Work - Building Block for CCUS Deployment

Accomplishments to Date

- ~1.5M MT net stored under MRCSP monitoring, >2.6M MT stored since start of EOR in 1996
- Completed monitoring at main test bed in late-stage reef
 - Micro-seismic, Post-injection PNC, microgravity, and VSP completed, Postinjection test well drilled and characterized
 - Returned to normal EOR operations, with selected monitoring continued
- Added new EOR reefs with complex geology to monitoring
 - Distributed temperature and Acoustic Monitoring
- Advancements in static and numeric modeling processes
- *MRV Plan and Life-Cycle Analysis completed*
- Commercialization with 45Q CCUS Partnership by Core Energy, LLC

Project Summary

- MRCSP Large-Scale Test >90% completed with diverse EOR field setting and variety of monitoring options
- Multiple monitoring options are being tested
- Both monitoring and modeling are essential for understanding performance imperative to be able to do much with limited data
- Regional characterization helping identify new storage zones and estimate storage resources – setting stage for commercial scale CCS
- Results will contribute to developing standards and best practices, NRAP tools, CO₂ capacity estimation tools

Lessons Learned

- CO₂ measurement/accounting performed with high level of confidence in a multi-field EOR complex
- Storage potential in closed reservoirs evaluated, after active EOR ends – EOR to storage transition
- Geologic complexity within and across reefs affects CO₂ injection, migration, and storage
- **Pressure monitoring** remains the mainstay for managing injection operations and monitoring reservoir response
- Advanced monitoring technologies still require testing/validation for confident assessment of plume development
- Characterization-monitoring-modeling loop requires more research for cross-validation over the life-cycle
- A well-developed CO₂-EOR regulatory/policy framework with financial incentives essential for enhanced associated storage

Appendix

Benefit to the Program

MRCSP Basin Large-Scale Injection

- Objective Inject/monitor 1 million metric tons of CO₂ in collaboration with EOR operations.
- Evaluate CO₂ injectivity, migration, containment

Project Overview Goals and Objectives

Project Overview Goals and Objectives

Organization Chart

MRCSP Scope of Work Structured Around Six Tasks

Gantt Chart

N	IRCSP Phase III Schedule Year	-	F	/12	-	1	F	¥13		1	F	/14	_	Г	F	Y1:	5			FY1	16	-		F	¥17			F	¥18	_	-	FY	19	ŀ	FY20
No.	Task Quarter	1	2	3	4	1	2	3	4	1	2	3	4	1	. 2	2 3	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1
10	Regional Characterization		-												-	95%	60	om	npl	ete															
1.0			-																																
2.0	Outreach															9(0%	Co	om	plet	te														
3.0	Reservoir Studies in Depleted Niagaran Ree	fs												È		9	95%	۶Ċ	om	nple	ete														\diamond
-	NEPA EQ and Site Workplan						-	-	-	-	-			1	1						-		-	-				-	-		-	-			
-	Advanced Geological Characterization	-		-		Г																		1						-		-			
	Reservoir Modeling and Analysis						+																	T											
-	CO ₂ Injection				-									Г	1											1						-			
_	Monitoring and Analysis																																		
	Site Transfer		1											T	T																				
4.0	Reservoir Studies in Active Niagaran Reefs	-	-		5	ī	ī	ī	ī	ī						Q <i>l</i>	5%	Co	m	plei	he														
	NEPA EQ and Site Workplan										-						J /0					_	-					-							
-	Reservoir Modeling and Analysis	-	-		+	í –	È							t					+														$ \rightarrow $	+	
-	CO ₂ Injection and Mass Flows	-		-	-		+				+		+		+		+	+	+		_			┢	+	+	+	+			-	-	\vdash	+	
-	Monitoring and Analysis		-																																
5.0	Reservoir Studies New Niagaran Reefs	-	-	-		Ē	Ē	F	F	Ē				ī	ī						9	0%	C	h	plet	6		Ē							
0.0	Site Characterization Plan	-		-	-				-		-			r				-						T							1				-
-	Advanced Geological Characterization						-			-	-	-					+		Т	-				Ŀ			-				-		\square	+	
-	Reservoir Modeling and Analysis	-				-	+	-		-				Ē			t		+					t		t								+	
-	CO ₂ Injection	-			-	-	-	-	-	-	-	-					+		+					┢	-	+	+	-							
-	Monitoring and Analysis					-	-			-	-						╈		+				\vdash	┢		+	+	+							
-	Site Transfer										-													T										H	
		-							-	-		-			1	-		-			-		-	1			1	-	-	_					
6.0	Project Management															90°	% (Con	np	lete)														
7.0	Deep Saline Formation Activities	-	-													r		-				30%	% C	Con	nple	ete			1	-		-			
	Document and Close St. Peter SS Well	-	-	-		<u> </u>	+				+		+		+		+	-	-				-						-	-	-	-	$ \rightarrow $	-	
	Approval of workplan before field work.				-					-																	1								
0	Approval of basline geologic report befor	e i	njec	tio	n																														
•	Industry Review at MRCSP Annual Mee																																		
0	Task Reports														1												1	1							
	Post-transfer monitoring																																		

Bibliography

Peer Reviewed

- Mawalkar, S., Burchwell, A., Kelley, M., Mishra, S., Gupta, N., Pardini, R., Shroyer, B., and Brock, D. 2019. Where is that CO₂ flowing? Using Distributed Temperature Sensing (DTS) technology for monitoring injection of CO₂ into depleted oil reservoir. International Journal of Greenhouse Gas Control, Volume 85, pg. 132-142, June 2019.
- Gupta, N., Kelley, M., Haagsma, A., Glier J., Harrison, W., Mannes, B., Champagne, P., Pardini, R., Wade, S., and Yugulis, M. 2019. Assessment of Options for the development of a stacked storage complex in the Northern Michigan Basin, USA. International Journal of Greenhouse Gas Control, Volume 88, pg. 430-446, September 2019
- Welch S.A., Sheets J.M., Place, M.C., Saltzman M.R., Edwards C.T., Gupta, N., Cole D.R., 2019, Assessing Geochemical Reactions during CO₂ Injection into an Oil-Bearing Reef in the Northern Michigan Basin, Applied Geochemistry, 100, 380-392.

Papers in review

- Mishra, s., Haagsma, A., Valluri M., and Gupta, N. In Review. Assessment of CO₂ Enhanced Oil Recovery and Associated Geologic Storage Potential in the Michigan Northern Pinnacle Reef Trend. Energies.
- Haagsma, A., Main, J., Pasumarti, A., Valluri, M., Scharenberg, M., Larsen, G., Goodman, W., Conner, A., Cotter, Z., Keister, L., Harrison, W., Mishra, S., Pardini, R., and Gupta, N. In Review. A Comparison of CO₂ Storage Resource Estimate Methodologies for a Regional Assessment of the Northern Niagaran Pinnacle Reef Trend in the Michigan Basin. Environmental Geosciences

