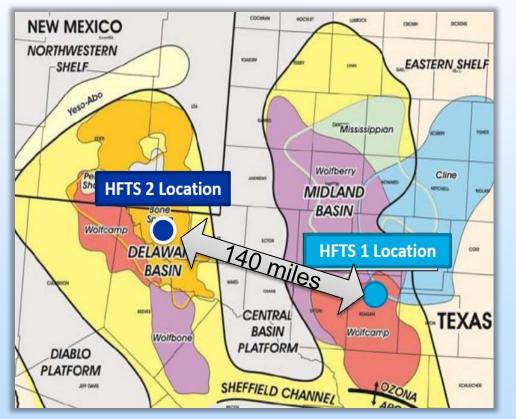


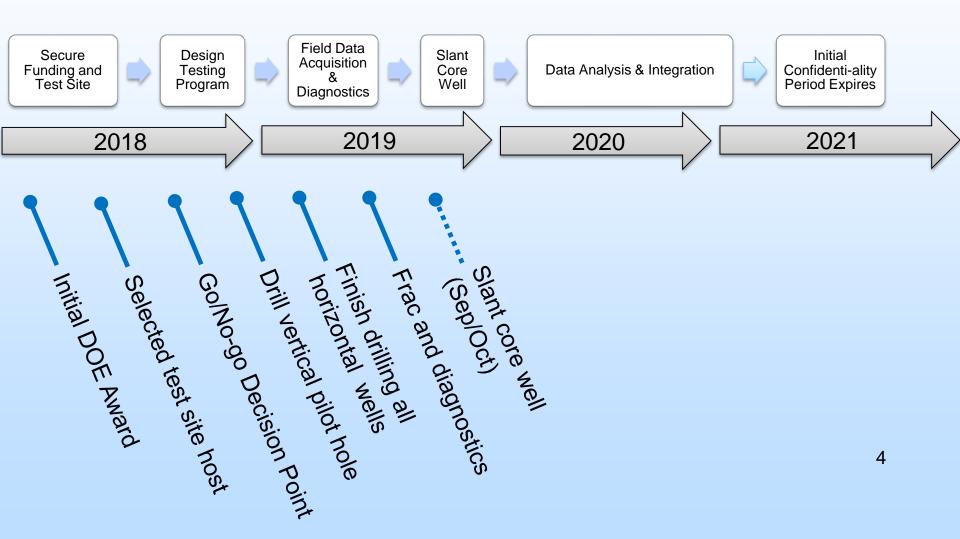
Hydraulic Fracturing Test Site 2 (HFTS 2) DE-FE00231577

Jordan Ciezobka Gas Technology Institute (GTI)


U.S. Department of Energy - National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting

August 28, 2019

Presentation Outline


- Project Overview
- Project Progress
- Background Data
- Industry Participation
- Test Site Location and Well Details
- Technical Status
- Accomplishments to Date
- Synergy Opportunities
- Summary
- Appendix

Hydraulic Fracturing Test Site #2: Project Overview

- Field-based hydraulic fracturing research program in west Texas, Permian (Delaware) Basin
- Public-private partnership with NETL and 16 industry partners providing technical support and cost sharing
- Site host Anadarko (Shell interest owner)
- \$30 million of new hydraulic fracturing research
- Advanced diagnostics including coring through hydraulically fractured reservoir, fiber optics, pressure monitoring, proppant quantification, etc.
- Goal is to define/mitigate environmental impact and optimize HF and well spacing

Project Progress and Major Milestones

Background Data

- 20 Wolfcamp A Wells
- Generic Data
 - Daily drilling and completions reports
 - Final directional surveys; Final as-built plats
 - Wellbore, casing BHA/bit specs/diagrams
- Completion Information
 - Well test report, frac stimulation reports
 - Stage lengths, cluster spacing, proppant/fluid
- Daily Production Data
 - Oil, gas, water, pressures, choke sizes
- Vertical Core with Conventional Core Analysis
 - Photographs, Hyperspectral Scanning, XRD & Thin Section Analysis, High Resolution SEM

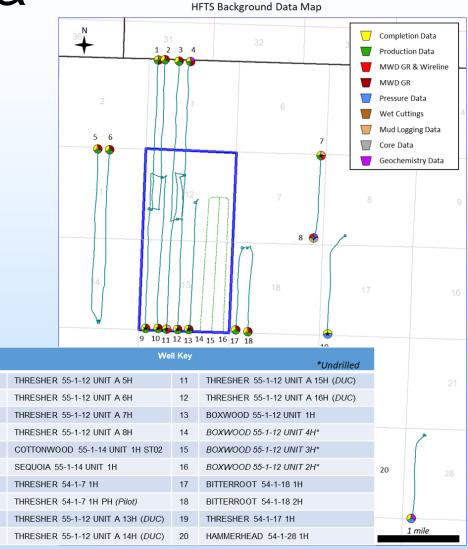
2

3

4

5

6

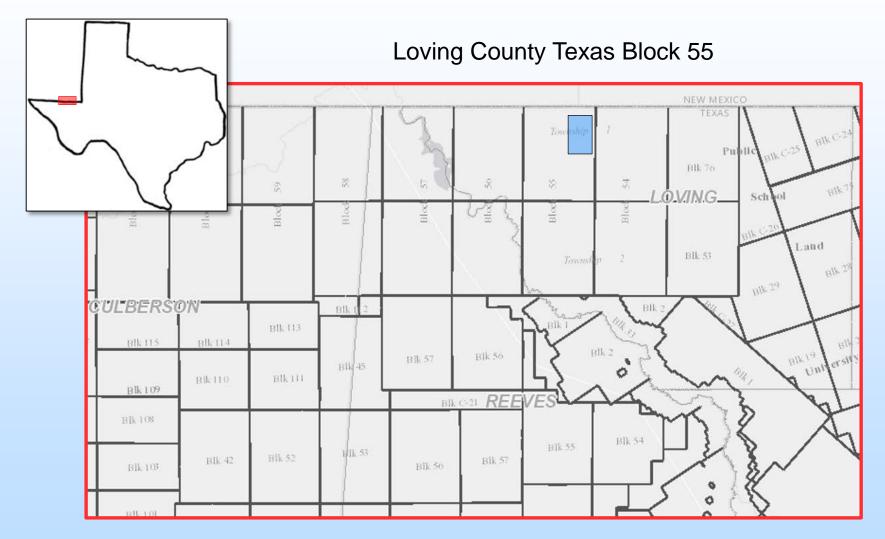

7

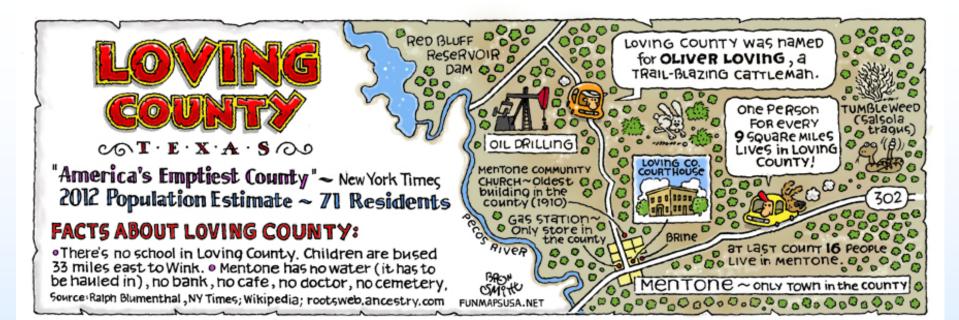
8

9

10

- Geochemistry, Rock mechanics, Fresh State NMR
- Wireline Quad Combo-Dipole Sonic and OBMI
- Petrel Based Earth Model

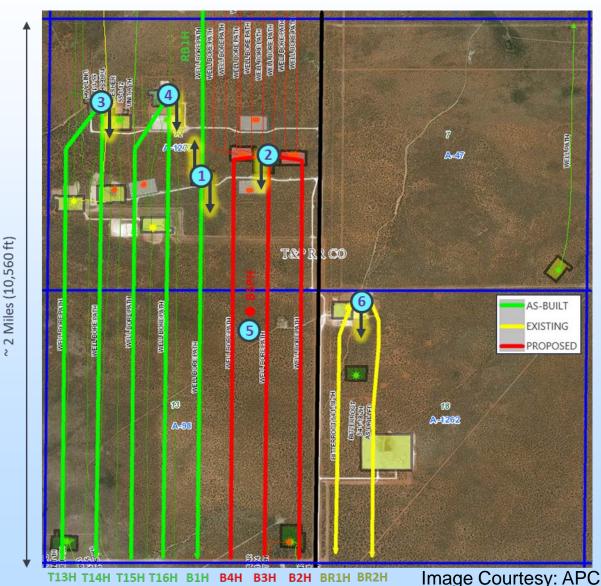

HFTSII – Delaware Participants


NETL/DOE Anadarko **Blackstone Borehole Seismic** BPX Chevron Cimarex Concho COP Devon Diamondback Oasis Oxy **PDC Energy** Shell **WPX XTO**

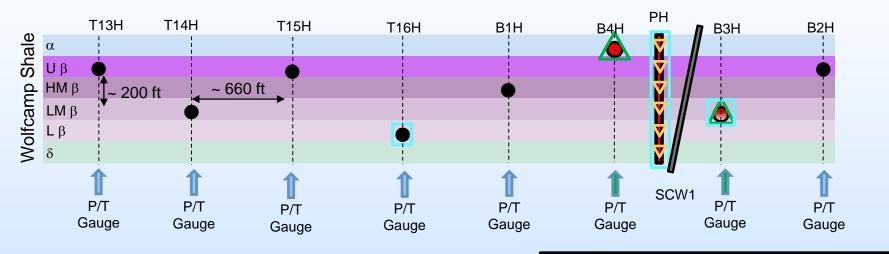
- Technical Advisory Group
- 6 Technical Committees with Chairs
 - Formation Evaluation
 - Completions
 - Microseismic
 - Instrumentation
 - Slant Core Well
 - Data Integration and Modeling

Currently 126 SMEs

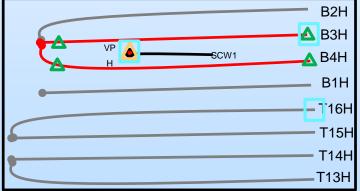
Test Site Location



Test Site Wells


New Drilled Wells (3 FO)

- Pad 2: Boxwood 55-1-12 Unit 2H/3H/4H
- Pad 5: Boxwood 55 1-12 Unit 5PH
- Existing Drilled Wells
 - Pad 1: Boxwood/Redbud 55-1-12 Unit 1H
 - Pad 3: Thresher 55 1-12 Unit A 13H/14H
- Pad 4: Thresher 55-1-12 Unit A 15H/16H
 Producing "Parent" Wells
 - Pad 6: Bitterroot 54 1-18 1H/2H



Wells & Diagnostic Instrumentation

5 Wolfcamp Alpha and Beta Targets

- Vertical Pilot Hole with Permanent Fiber Optic and P/T Gages
- Horizontal Test Well
- Horizontal Test Well with Permanent Fiber Optic
- Permanent P/T Gage at Toe and Heel of Horizontal Well
- ▽ Permanent P/T Gage in Vertical Well
- Conventional MSM Array in Vertical and Horizontal wells
 Planned Slant Core Well

*Slant core well trajectory is notional at this time.

Extensive Use of FO Diagnostics

Leveraging Shell's expertise and equipment

	FO Applications - GTI HFTS#2						
JO LO	Ops Monitoring						
đ	Cementing Ops & Curing						
5	Geothermal						
5							
Ę	Microseismic						
atio	Cross-Well Stimulation Monitoring						
inu i	Stimulation Monitoring						
Stir	Stimulation Warmback						
55	Qualitative Production Monitoring *2						
ţ, ġ,	Flowing Pressure						
Po Bo	Lift Monitoring - TBD						
Sti Pre	Pressure / Production Interference - TBD						

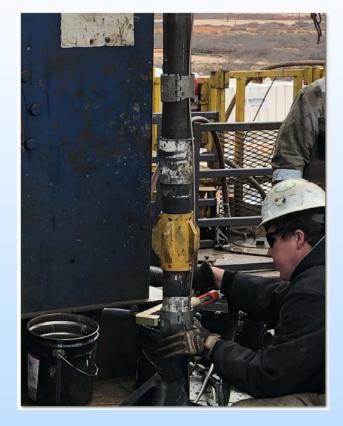
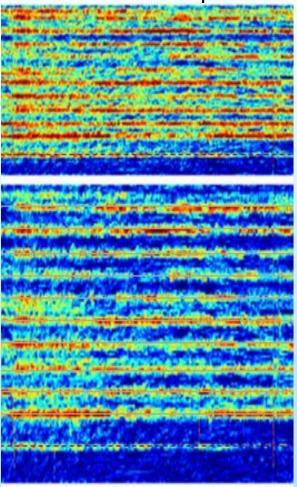



Image courtesy of Shell, Anadarko

Testing of Various Completions

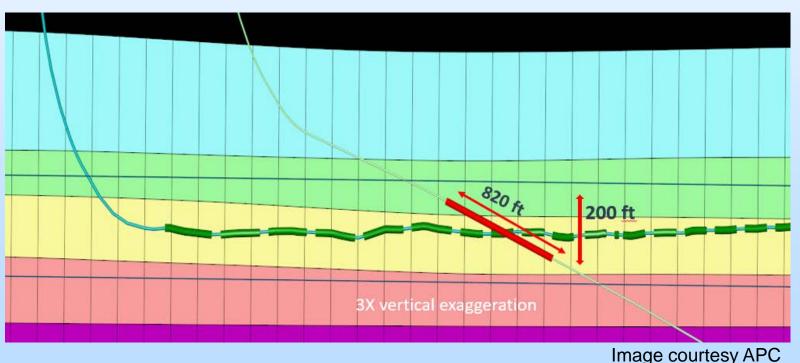
- Base design
- Aggressive Limited Entry (ALE)
- ALE with tapered perforations
- Extreme Limited Entry (ELE)
- Extended Stage Length (ESL) with ALE
- ESL with tapered perforations and ALE
- Tight clusters with normal stage length
- Tight clusters with shorter stage length
- Single entry to calibrate DAS strain and amplitude

FO DAS Response

Cross Well Strain Monitoring

First known cross-well strain survey using a vertical and horizontal FO array

Accomplishments to Date


- Drilling
 - All wells drilled
 - Recovered vertical core on pilot hole (540ft of 750ft, 72%), failed core catcher
 - Installed 8 external P/T gauges on pilot hole
 - Ran fiber on Boxwood 3H, 4H, and 5PH
 - Logged 3 laterals and pilot hole, RSWCs for missed core section

Accomplishments to Date

- Completions
 - DFITs monitored 4 wells (Thresher 13H, 14H, 15H and Boxwood 2H)
 - Cable mapped fiber wells and ran gyro on Boxwood 3H to facilitate future slant well closer proximity
 - Monitored fracs with Microseismic tools placed in 3 wells: Boxwood 3H, Boxwood 5PH and Thresher 16H
 - Recorded FO Microseismic data
 - All wells frac'd, over 260 fracture stages in 8 wells
- Production
 - All Boxwood wells tubed up and on production

Planned Slant Core Well

- 76 degrees coring inclination
- >800' feet of slant core (~200' vertical coverage)
- Advanced OH logs
- Discrete P/T gauges

16

Synergy Opportunities

- Collaborate with other NETL field test sites; in the Marcellus, EagleFord, HFTS #1, etc.
- Support ongoing DOE HF research
- Explore NETL and other NL's laboratory capabilities for potential collaboration using HFTS II core and field data

Project Summary

- Secured test site with Anadarko and Shell
- Substantial background data set
- Signed on 14 industry participants
- Significantly enhanced diagnostic and experimental design compared to HFTS#1 in Midland Basin
- Drilled and cored a vertical pilot hole
- Installed fiber in 3 wells
- Planning to spud core well in September/October 2019
- Unique opportunity for extremely robust integrated data acquisition

Acknowledgements

Thanks to Department of Energy (DOE), National Energy Technology Laboratory (NETL), Anadarko and Shell, and all of the HFTSII Sponsors. Also thanks to Gary Covatch - NETL, Robert Anderson -APC, Jennifer Gujral – Shell, and Kent Perry – GTI, for all of their work on the project.

Appendix

These slides will not be discussed during the presentation, but are mandatory.

Benefit to the Program

- The research project is focused on **environmentally prudent** development of unconventional resources & enhanced resource recovery.
- The HFTS#2 is a collaborative, comprehensive hydraulic fracturing diagnostics and testing program in horizontal wells at a dedicated, controlled field-based site. The program emulates the field experiments DOE/NETL and GRI performed in vertical wells in the 1990s (Mounds, M-Site, SFEs). Technology has since advanced into long horizontal, multistage shale wells creating a new set of challenges and unanswered questions. HFTS will conduct conclusive tests designed and implemented using advanced technologies to adequately characterize, evaluate, and improve the effectiveness of individual hydraulic fracture stages. Throughfracture cores will be utilized to assess fracture attributes, validate fracture models, and optimize well spacing. When successful, this will lead to fewer wells drilled while increasing resource recovery.

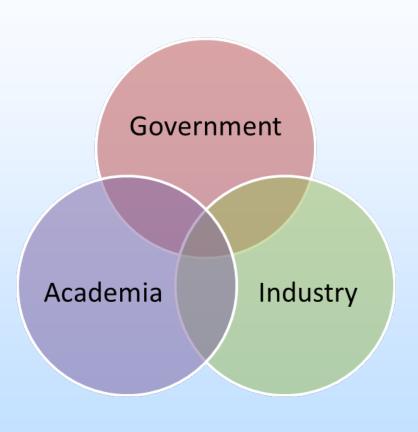
Project Overview Goals and Objectives

- The primary goal of the HFTS 2 is to minimize current and future environmental impacts by reducing number of wells drilled while maximizing resource recovery.
- Objectives
 - Assess and reduce air and water environmental impacts
 - Optimize hydraulic fracture and well spacing in a multi horizon stacked pay resource
 - Improve fracture models

Gantt Chart

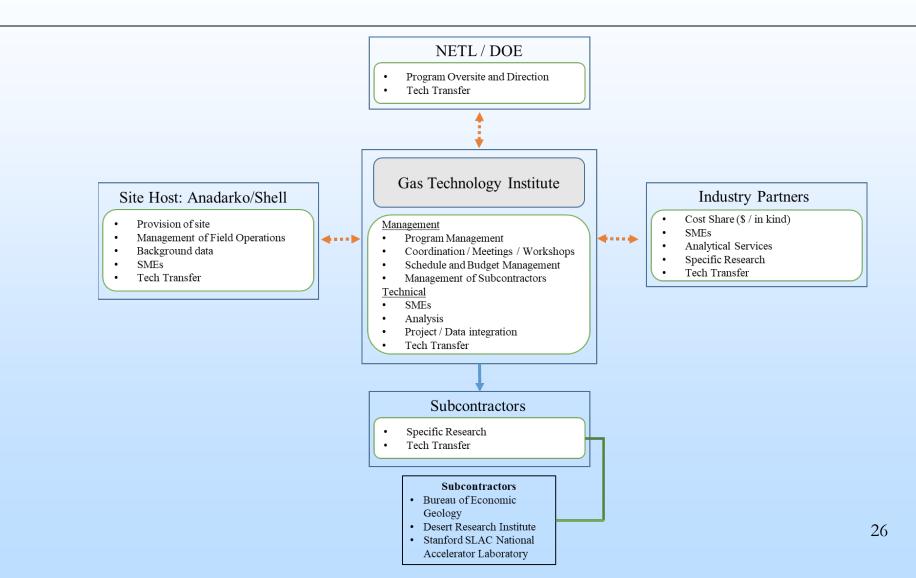
	March 2	2018	Year 1			Ye	Year 2				Year 3			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	02	Q3	Q4		
Phase I: PREPARATORY WORK														
Task 1: Project Management and Planning	M1													
Task 2: Test Site Selection & Field Data		-												
Acquisition Plan, Go/No-Go Decision	-	•												
Subtask 2.1: Test Site Selection	•	M2.1												
Subtask 2.2: Field Data Acquisition Plan	•	M2.2 M2.3												
Phase II: PROJECT IMPLEMENTATION														
Task 3: Field Data Acquisition									M3.6					
Subtask 3.1: Background Data Acquisition	(M3.1												
Subtask 3.2: Drill and Construct Vertical Science		-												
and Observation Wellbore			M3.2											
Subtask 3.3: Horizontal Treatment/Producing														
Wellbore Data Acquisition				M3.3										
Subtask 3.4: Drill and Construct Coring					M3.4									
Wellbore(s)					M3.5									
Task 4: Site Characterization			-							-				
Subtask 4.1: Build Geo (Earth) Model			•			M4	•							
Subtask 4.2: Fracture Characterization -(Bureau of														
Economic Geology (BEG)								TR						
Task 5: Hydraulic Fracturing Tracer Design		M5												
Task 6: Advanced Microseismic Data Analysis				•						-				
Subtask 6.1: Characterizing failure mechanisms				-										
and relation with proppant transport							TR							
Subtask 6.2: Fracture growth and interactions									TR	-				
Task 7: Completion Diagnostics				•						-•				
Subtask 7.1: Understanding Fracture Geometry				•			🗕 TR							
Subtask 7.2: Proppant Transport						•		TR	1					
Subtask 7.3: Fractured zone														
connectivity/conductivity										TR				
Task 8: Environmental Monitoring and														
Microbiology		M6							M7					
Subtask 8.1: Air Quality								TR						
Subtask 8.2: Groundwater quality				_				TR						
Subtask 8.3: Microbiology of reservoir fluids								TR						
Subtask 8.4. Microbial modification of shale														
permeability through mineral precipitation								TR						
Task 9: Cooperation/Coordination with Federal														
Labs for HFTS Data Collection and Analysis														
Task 10: Project Management, Analysis,														
Integration, and Coordination		Y1Q1	Y1Q2	Y1Q3	Y1R	Y2Q1	Y2Q2	Y2Q3	Y2R	Y3Q1	Y3Q2	FR		

Critical Path Milestones

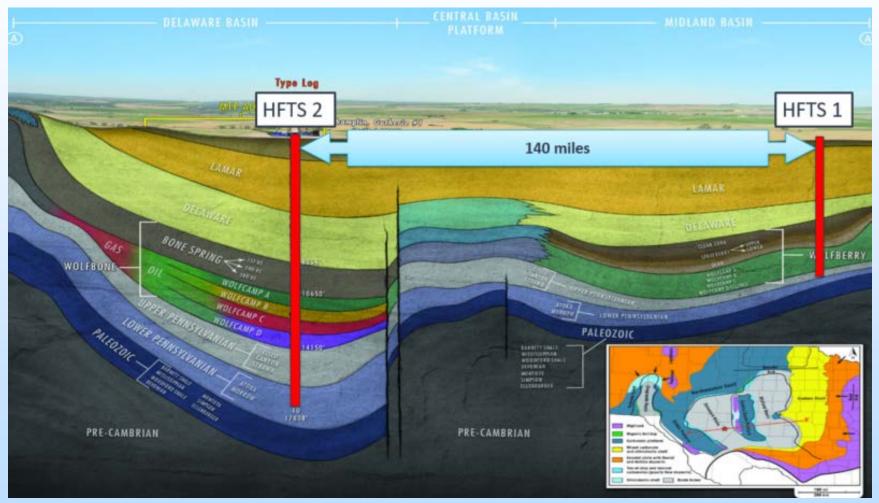

Milestone 1 - Project Management Plan Approval
Milestone 2.1 - Secured Test Site
Milestone 2.2 - Approved Field Testing Program and a "GO"
Milestone 2.3 - Approved Data Management Plan
Milestone 3.1 - Acquire background data
Milestone 3.2 - Drill vertical observation well
Milestone 3.3 - Complete hydraulic fracturing
Milestone 3.4 - Collect through fracture cores
Milestone 3.5 - Install discrete pressure gages
Milestone 3.6 - Completion of field data acquisition
Milestone 4 - Completed Earth Model
Milestone 5 - Final approved tracer program
Milestone 6 - Establish environmental baseline
Milestone 7 - Completion of environmental monitoring

List of Reports			
Quarterly Report 1, Year 1	Y1Q1		
Quarterly Report 2, Year 1			
Quarterly Report 3, Year 1			
Annual Report, Year 1	Y1R		
Quarterly Report 1, Year 2	Y2Q1		
Quarterly Report 2, Year 2	Y2Q2		
Quarterly Report 3, Year 2	Y2Q3		
Annual Report, Year 2			
Quarterly Report 1, Year 3	Y3Q1		
Quarterly Report 2, Year 3	Y3Q2		
Quarterly Report 3, Year 3			
Final Report	FR		
Topical Reports	TR		

Bibliography


– None

Public Private Partnership



- Leveraged investment in a dedicated, controlled field experiment
 - Access to producing and science wells explicitly designed for hydraulic fracturing diagnostics, environmental monitoring, data collection and technology testing
 - Use of multiple near-well and far-field diagnostics and verification with through fracture cores
 - Access to many subject matter experts
 - Early adoption of learnings by industry participants – technology transfer
 - Balanced science and practical issues
- Data available to public upon of expiration of confidentiality period

Organization Chart

Overview of the Permian Basin

Background Image Courtesy: Tarka.com

HFTS Locations – Significant Geologic and Geomechanical Differences

- There is ~150 miles between the basins, which are separated by a central basin platform creating different geologic settings.
- Vertical depth of Delaware basin is deeper double in some cases to that of the Midland basin.
- Provenance and burial history of the sediments is different resulting in different geomechanical properties of the rock.
- Fracture height growth is likely markedly different between the two areas with very little agreement amongst industry as to the created hydraulic fracture height.
- Pore pressure in the Delaware is higher and in some areas double that of the Midland basin (.70 to .75 in Delaware)
- Higher GOR in the Midland
- Significant difference of opinion as to HF job design in the Delaware