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Presentation Outline

e NRAP overview and Task 6 focus
e Post-injection closure studies

e Pursuing workflows to address critical
stakeholder questions
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Objective: Building tools improving the science base to address key
questions related to environmental impacts from potential release of CO,
or brine from the storage reservoir, and potential ground-motion impacts
due to injection of CO,
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How can a risk-based approach be used to
justify early closure at a GCS site?

Purpose: to provide a technical basis to support the cost-effective and safe
closure of GCS projects, using a risk-based justification as opposed to a
generic, default monitoring plan.

Focus: Ensuring non-endangerment of groundwater resources post closure

— Is plume immobility required to ensure future containment?

— What defines conformance in the context of long-term containment?

— What is the anticipated evolution of risk at a storage site, post
Injection?

— How does a risk-based monitoring strategy differ from a default
monitoring strategy?

Approach: A multi-site study to probe questions related to GCS site closyre



How can a risk-based
approach be used to
justify early closure at a
GCS site?

Purpose: To provide a technical basis for a
cost-effective and safe closure of GCS
projects, using a risk-based approach as
opposed to a default monitoring period.

Focus: Ensuring non-endangerment of
groundwater resources post closure

Approach: A multi-site study to probe
guestions related to GCS site closure
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Quantification of plume stability

Harp, D., Ohishi, T., Chu, S., Chen, S., Pawar, R. GHG S&T, 2019

Objective:
Development and
application of plume
stability metrics relevant
to closure
considerations (e.g.,
EPA Class VI PISC, EU
CCS Directive)

Approach:
Spatial moment analysis
tailored to GCS

applications.

Spatial moment:

Moment
order

Scalar field
(e.g., CO2 sat)

0 00 OO —
Mg (t) = f_m f_m f_m xPyiz" f(x,y,2,t) dx dy dz

Coordinates

Mobility metric (effective centroid velocity)

N
)

Centroid Velocity (m/yr)

- = ~
a

40 A

354

w
o
s

o
"

o
s

Flat heterogeneous reservoir

Velocity in X direction

Velocity in Y direction

b o ow»
L .

10 20 30 40 50 €0 70 80 20 100
Time (Year)

Centroid Velocity (m/yr)
-

10 4

Solid: Dipping heterogeneous reservoir
Dashed: Dipping homogeneous reservoir

Velocity in X direct

Velocity i

T T T T T T T T
10 20 30 40 50 60 70 80

Time (year]

Time

Spreading metric (effective longitudinal

dispersion)
500 1
400 4 Spreading in Primary Direction
_r:; Spreading in Secondary Direction
g
300
3 Flat heterogeneous reservoir
r.;.x'ZOO E
£
l-:‘-100
0 T T T T T T T T T 1
Q 10 20 30 40 50 60 70 80 90 100
Time (Year)
500 . .
poo Dipping homogeneous (red and yellow)
40(') |\ Dipping heterogeneous (blue and orang
i':q 300 o
T 250
2 200
4; 150 4 T
* 100 4
50 4
(4] T T T T 1
o 10 20 30 40 50 60 70 80 90 100

Time (year)

[



Relationship between plume stability and risks
Pawar, R., Chu, S., Makedonska, N., Onishi, T., Harp, D. (forthcoming)

Objective: Assess
whether lack of CO,
plume stability implies
there is risk to
groundwater

Approach:

Compute risks using
NRAP-IAM-CS. Assess
links between risks and
plume stability.

Results:

Lack of plume stability
does not directly imply
risks:

CO, plume area and derivative
for different injection rates

CO, plume spreading for
different injection rates
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Reducing Uncertainty by Assimilating Monitoring Data
Chen, B., Harp, D., Lu, Z., Pawar, R (forthcoming)

Objectives:

* Conformance/concordance
assessment

v’ Monitoting
data/simulation agreement
improves over time

v’ Improve/refine reservoir
models

* Reduce uncertainty in
predictions of risk metrics,
such as plume area, P/S
predictions at legacy wells,
wellbore leakage rates,
groundwater aquifer impact

(pH/TDS plume size)

* Model improvement over monitoring durations
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Simulation Study of Conformance Uncertainty Reduction Over Time

Christine Doughty and Curtis M. Oldenburg (LBNL)

Definition: Conformance is the
combination of (i) models
matching observations and (ii)
performance.

Hypothesis: The uncertainty in
conformance decreases over
time as models are improved
based on observations of the
system.

Approach: Build a virtual GCS
site at a depleted natural gas
reservoir to generate a set of
“actual” data. Play out a
scenario where an operator
builds and runs successively
better models each year based
on monitoring observations of
the “actual” system.
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Simulations show that pressure and saturation forecasts become better
over time although saturation is affected by local heterogeneity

We sequentially Podel/Pactual @t 15 0bservation points (y axis) after 5 yrs of
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Ref. Doughty, C., and C.M. Oldenburg, CO, Plume Evolution in a Depleted Natural Gas Reservoir: Modeling of Conformance
Uncertainty Reduction Over Time, IJGGC NRAP Special Issue, submitted.



Application of OpenlAM for Risk-Based AoR to FutureGen 2.0

Dataset
Demirkanli, I. White, S. Bacon, D. PNNL (forthcoming)
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Managing Well Leakage at a GCS Site with Many Wells

Lackey, G.; Vasylkivska, V.; Huerta, N.; King, S.; Dilmore, R. (2019)
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Methods

 Demonstrate a workflow for characterizing well leakage risks at a brownfield
GCS site and explore the efficacy of different risk management strategies.

» Considered three leakage risk management strategies: (1) risk-based, (2)
distance-based (3) hybrid risk and distance

 Determine the impact of the PISC period length on the efficacy of long-term
leakage risk management.




Accomplishments to Date

— Establish list of critical GCS risk-related questions

— Conducted set of studies on risk-based post-injection closure
* 9 peer reviewed manuscripts published or in review

* Develop new approaches and NRAP tool functionality to enable
workflows related to closure

— Initiated development of risk-assessment workflows
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Synergy Opportunities

— NRAP is interested to engage with stakeholders from the CCUS
community to test, validate, and improve risk management tools,
workflows, and protocols

— Please contact us at: nrap@netl.doe.gov

15



Other NRAP Presentations

« NRAP Tool Users Meeting; Tuesday 6:00 — 7:00
PM; Room 303, 304, 305

e NRAP Oral Presentations; Room 303, 304, 305

Presenter Time Title

Erika Gasperikova, LBNL Wed. 2:10 PM Task 4: Strategic Monitoring for
Uncertainty Reduction

Dylan Harp, LANL Wed. 3:30 PM Task 2: Containment Assurance

Diana Bacon, PNNL Wed. 4:10 PM Task 5: Application of Risk Assessment
Tools and Methodologies

Joshua White, LLNL Thurs. 1:00 PM | Task 3: Induced Seismicity Risk

e Poster Session Wed. 5:00 — 6:30 PM: Ballroom
Foyer L




Project Summary

— Key Findings.

Closure can be safe even when plumes in the reservoir are mobile.

A risk-based approach to site care and closure can save both time and
resources.

Adaptive, risk-based monitoring across space and over time can reduce
costs without increasing risks.

Brownfields (sites with many wells) can be safe storage sites.

Recursive improvement of models with monitoring data can enhance
system knowledge and assure safe site closure.

— Next Steps.

Continue to define, test, and refine risk assessment workflows

* Risk Management/Mitigation

17
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— Bibliography

— NRAP Posters at this meeting
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Benefit to the Program

NRAP products will improve the ability to evaluate and manage
environmental risks, and reduce uncertainty in those assessed risks, at
specific carbon storage sites. The tools, methodologies, and improved
science base generated by NRAP can be used by both operators and
regulators to advance the state of understanding and improve
communication of risks and risk management strategies associated with a
storage site, thereby reducing barriers to large-scale deployment of this
technology. These products will aid operators in the design and application
of monitoring and mitigation strategies. These tools can also be used by
regulators, or their agents, to help identify and quantify risks associated with
geologic carbon storage and perform appropriate cost-benefit analyses for
specific carbon storage projects. Taken together, NRAP products will help
build confidence in critical areas of site performance that will support
investors, regulators, and other stakeholders to advance CCS projects.

20



Project Overview
Goals and Objectives

The objective of NRAP Task 6.0 is to identify and distill critical insights from
NRAP risk assessment methodologies and tool development and
demonstration efforts to inform stakeholders and their decision making on
critical issues of GCS risk assessment, risk management, and uncertainty
reduction.

To accomplish Task 6.0 objectives, researchers will employ tools and
methodologies developed previously under NRAP Phase I, as well as new
methodologies, tools, and scientific findings developed through the course
of NRAP Phase Il (e.g., the new NRAP open-source IAM) to perform
analyses targeted to addressing critical risk-related questions. A key aspect
of this work will use the NRAP approach of considering probabilistic, whole-
system performance to develop those insights in the context of system
uncertainty.

The results from environmental risk studies at GCS sites will directly
address prioritized questions, which helps to address programmatic goals
related to GCS, to build confidence in the viability of large-scale CO2

storage and to guide future R&D efforts. -
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Task 6: Project Timeline Overview (Gantt Chart)

Addressing Critical Questions Related to Assessment and Management of
Environmental Risk at CO,, Storage Sites

o 2017 2018 2019 2020 2021
Research Activities

QL Q2 Q3 Q4 Q1 Q2 Q8 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Task 6 — Addressing Critical Questions
Related to Assessment and @ I I @ @ @ <EEI I
Management of Environmental Risk at
CO, Storaae Sites

Milestones Chart Key
1. Establish Task 6 prioritized risk-related questions and presentation to NRAP Executive Committee and # TRL Go / No- Project <> Milestone
Stakeholder Group, (August 2017) Score Go Completi
2. Complete analysis and draft report on evaluating residual risk in post-injection site care period to inform Timefram o0
decisions about monitoring requirements (March 2019) ® Decision
3. Develop draft NRAP tools workflow manuscript (August 2019); Complete final NRAP tools workflow report Points
(December 2019) NRAP Executive Committee feedback following
4. Complete analysis and draft report on risk management / mitigation alternative evaluation (August 2020); final annual NRAP EC/SG briefing (August)

report (December 2020)
5. Complete draft synthesis report on key NRAP Phase Il findings (August 2021); final report (December 2021)

Key Accomplishments/Deliverables

2019: Technical report detailing insights on risk-based assessment of post- ¢ Inform stakeholder decisions (operators, regulators, insurers, etc.)

injection site closure requirements about risk-based post-injection site closure justification

2019: Technical report describing NRAP tools workflow for risk « Workflows detailing application of NRAP tools to address critical risk
assessment performance questions at GCS sites

2020: Technical report on risk management / mitigation alternative * Insights on risk management and uncertainty reduction at CO, storage
evaluation sites

2021: Technical report summarizing insights on risk management and
uncertainty reduction from NRAP Phase Il research
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Poster Session

Wed., 5:00 — 6:30 PM; Ballroom Foyer

Presenter

Title

Burt Thomas, NETL

Tools and Workflows for risk assessment and
management at geologic carbon storage sites

Chris Brown, PNNL

Considerations for risk-based determination of post-
injection closure period at geologic carbon storage
sites

Bailian Chen, LANL

Risk-based conformance evaluation at geologic
carbon storage sites

Erika Gasperikova, LBNL

Using modeling of monitoring for leak detection
threshold evaluation at geologic carbon storage sites

Dennise Templeton, LLNL

Toward a recommended practice for induced
seismicity risk quantification and management at
geologic carbon storage sites
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What will be the outcomes of NRAP by the
end of Phase I1?

Key insights to inform decisions related to minimizing and

KEY mitigating risks associated with long-term storage of CO,
INSIGHTS
Protocols for designing monitoring and operational
PROTOCOLS B &

strategies to minimize & mitigate risk

Workflows for answering specific risk-mitigation
guestions during the project-planning phase

Toolset for rapid, science-based quantification of key
risk-related processes; released beta-versions

Targeted research to validate/quantify NRAP
approach
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