Development of Defensible CO₂ Storage Methods and Tools to Quantify Prospective Storage in the Subsurface

Carbon Storage DE-FE1022403

Angela Goodman and Kelly Rose National Energy Technology Laboratory

U.S. Department of Energy National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 26-30, 2019

Presentation Outline

Resource Assessments: Provides the Department of Energy (DOE) defensible carbon dioxide (CO₂) storage methods and tools to quantify prospective storage for the Carbon Storage Atlas, National Energy Technology Laboratory's (NETL's) Regional Carbon Sequestration Partnership (RCSP), and CARBONSAFE projects.

Task 2: Develop Defensible DOE Methods, Tools, and Storage Efficiency for CO₂ Storage in Shale Systems – *presented by Angela Goodman*

Task 3: Develop Defensible DOE Methods, Tools, and Storage Efficiency for CO₂ Storage in ROZs – *presented by Angela Goodman*

Task 4: Developing Defensible DOE Methods, Tools, and Storage Efficiency for CO₂ Storage in Offshore Reservoirs – *presented by Kelly Rose*

Prospective CO₂ Storage in the Subsurface

Prospective CO ₂ Storage Resource for U.S. and parts of Canada				
Regonal Carbon Storage Partnerships	Billion Metric Tons			
Regular Carbon Storage Partnerships	Low	High		
Oil and Natural Gas Reservoirs	186	232		
Unmineable Coal	54	113		
Saline Onshore	2,379	21,633		
Shale Formations	Shale Formations Task 2			
Saline Offshore	Task 4			
Residual Oil Zones	Tas	sk 3		

Saline Formations Bradesceler Redesceler Redesceler

Task 2: Develop Defensible DOE Methods, Tools, and Storage Efficiency for CO₂ Storage in Shale Systems

Task Technical Approach and Project Relevancy

- Objective:
 - Deliver a quantitative method and CO2-SCREENv2.0 Tool that estimates carbon dioxide (CO₂) storage resource in shale formations.
- Benefit:
 - Results to **inform high-level decision making** related to carbon storage initiatives at the national and regional scale.
- Challenges:
 - Lack of detailed geologic and petrophysical data
 - Need to understand the void space within fractures and pores for CO₂ storage and how kerogen and minerals are affected by CO₂ contact.
- Approach:
 - Develop method and tool that are **accepted by the peer review community** for public dissemination.

Team: Angela Goodman, Sean Sanguinito, Eugene Myshakin, Bob Dilmore, Grant Bromhal, Harpreet Singh, Scott Frailey, Alex Azenkeng, Beth Kurz, Wes Peck, Charlie Gorecki

Task 2: Project Timeline Overview

Develop Defensible DOE Methods, Tools, and Storage Efficiency for CO₂ Storage in Shale Systems

Key Accomplishments

- ✓ Developed U.S. DOE NETL Methodology for Estimating the Prospective CO₂ Storage Resource of Shales at the National and Regional Scale (2016)
- ✓ Developed **storage efficiency factors** for shale storage (2018)
- ✓ Deployed **beta CO2-SCREENv2.0 Tool** for shale for community validation on EDX (2018)
- ✓ Modeled flow regimes and storage efficiency of CO₂ injected into depleted shale reservoirs (2019)
- Incorporating image-based techniques to estimate the CO₂ storage resource in shale organic and inorganic components stemming from the efforts at EERC into the SCREEN Tool (2019)
- ✓ Developed **final CO2-SCREENv2.0 Tool** for shale for public access on EDX (2019)

Refinements of Storage Efficiency Factors

Angela L. Goodman

Task 3: Develop Defensible DOE Methods, Tools, and Storage Efficiency for CO₂ Storage in ROZs

Task Technical Approach and Project Relevancy

• Objective:

- Deliver a quantitative method and CO₂-SCREENv3.0 Tool that estimates carbon dioxide (CO₂) storage resource in residual oil zone (ROZ) formations.
- Benefit:
 - Estimate the CO₂ storage potential in ROZs. Results to inform high-level decision making related to carbon storage initiatives at the national and regional scale.
- Challenges:
 - Limits on the library of data which characterizes ROZ systems.
 - Industry has not fully recognized ROZ oil resources worthy of exploitation.
 - False indicators of mobile oil in cores may give the impression of a ROZ.
 - CO₂ floods for ROZ fairways may take a considerable amount of time to produce a sustainable rate of oil production.
- Approach:
 - Develop method and tool that are **accepted by the peer review community** for public dissemination.

Team: Angela Goodman, Sean Sanguinito, Eugene Myshakin, Bob Dilmore, Harpreet Singh, Tim Grant, Dave Morgan, Grant Bromhal, Peter Warwick, Sean T. Brennan, Charles Gorecki, Wesley Peck, Matthew, Scott Frailey, Rajesh Pawar

Task 3: Project Timeline Overview

NATIONAL ENERGY TECHNOLOGY LABORATORY

• Develop Defensible DOE Methods, Tools, and Storage Efficiency for CO₂ Storage in ROZs

Key Accomplishments

- ✓ Developed Methodology and Efficiency Factors for Estimating the Prospective CO₂
 Storage Resource of ROZs at the National and Regional Scale (2019)
- ✓ Deployed **beta CO2-SCREENv3.0 Tool** for ROZ for community validation on EDX (2019)
- Develop **final CO2-SCREENv3.0 Tool** for shale for public access on EDX (2020)
- Deploy **CO2-SCREENv1**, **2**, and **3.0 Tool** without license restrictions (2020)

	Net effective formation		Swee Efficier	•	O_2 dissol	ution in	oil
	volume			,	S _{wirr} S _{or (Low)} S _{or (High)}) () ().1).2 .38
	$E_{h}\phi_{tot}E_{\phi}[(1-S_{wirr} - S_{or})\rho_{c}$ Total CO ₂ Storage (Equation				R _{c/o(Low)} R _{c/o(High}) 680	kg/m³ kg/m³
P ₁₀ (Mt)	P ₅₀ (Mt)	P ₉₀ (Mt)		Efficiency Fa Parameter		D	Source
1.75	5.89	14.47		E _A	P ₁₀ 0.20	P ₉₀ 0.80	Source
				E _A	0.20	0.30	IEA-GHG, 200
	Mass (Mt)	Percent of Total					IEA-GHG, 200
tal CO ₂ (P ₅₀)	5.89	100		Eφ	0.64	0.77	IEA-GHG, 200
ee phase (P ₅₀)	5.30	90	Log-odds	Ev	0.16	0.39	IEA-GHG, 200
	0.44	10	stochastic approach	ED	0.35	0.76	IEA-GHG, 200

CO₂-SCREEN

NATIONAL ENERGY TECHNOLOGY LABORATORY

CO₂- SCREEN (Version 1.0, 2.0, 3.0, 4.0)

Storage prospeCtive Resource Estimation Excel aNalysis

- Version 1.0 = Saline Formations
- Version 2.0 = Shale Formations
- Version 3.0 = Residual Oil Zones
- Version 4.0 = Converted to Python

ELSEVIER	Greenhouse Gas Control				
CO ₂ -SCREEN tool: Application to the oriskany sandstone to estimate prospective CO ₂ storage resource Sean Sanguinito ^{3,b/s} , Angela L Goodman ³ , James I. Sams III ³ ^a LS. Duprumer of Durge. Reland Deep Technologi calorence, 626 Occument MI Real, Philosoft, PA 15286, United Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, Base Accume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real Philosoft, PASS, build Bases ^b ACCOM Comparison, 626 Occume MI Real P					

464 downloads since April 2017

Download Stats for All Revisions

https://edx.netl.doe.gov/dataset/co2-screen-version-2-0

Tasks 2 & 3 Synergy Opportunities

- Developed quantitative statistical methods to estimate the prospective CO₂ storage resource of subsurface geologic formations across the United States [> 2,400 billion metric tons of storage = 400 yrs. of storage space]
 - Significantly advances accuracy and science behind storage estimates
 - First of its kind storage methods meets DOE program goals by directly impacting global energy policy for CCS
 - Provides guidance for other strategic planning by nations worldwide (<u>United States, Canada, Mexico, China,</u> <u>Sweden, Norway, Israel, and South Africa</u>)
 - Publicly accessible via peer-reviewed journals, Carbon Storage Atlas, CO2-SCREEN (EDX and GoldSim)
 - This estimation tool (CO₂-SCREEN), has been downloaded by external peers over 400 times since it became available on EDX as a public tool in 2017
 - Highly collaborative effort: USGS, EERC, ISGS, CMU, NIST, LANL
- Policy makers and potential investors need reliable estimates of storage estimates for indication of long term sustainability for use in public **policy and business investment decisions**
 - Reduce CO₂ emissions / Store CO₂ securely
 - Unknown effect causing CO₂ to escape
 - Public health
 - Successfully deploy CCUS technology
- Valuable resources and time could be wasted if sorption estimates are made based on unreliable data
 - MVA, drilling patterns, CO₂ pipelines, etc

Task 4: Developing Defensible DOE Methods, Tools, & Storage Efficiency for CO₂ Storage in Offshore Reservoirs

Offshore Carbon Storage, Task 4, Kelly Rose (PI) Lucy Romeo (co-PI) POP: 2017-present

Values Delivered

- Improved the accuracy of offshore saline resource estimations at multiple spatial scales
- Offshore tailored efficiency terms from DOE carbon storage method
- Methodology & tool to execute data-driven technical assessment of offshore storage resources
- Extended and integrated offshore oil/gas spatial, analytical tools for offshore CS stakeholder needs
- This methodology complements NETL's CO₂ Storage prospeCtive Resource Estimation Excel aNalysis (CO₂ Screen) Tool

Team: Kelly Rose, Lucy Romeo, Jennifer Bauer, Kate Jones, R. Burt Thomas, & Patrick Wingo

Goodman et al., 2016

Task 4 Accomplishments

Science-Driven Approach for Predicting

Subsurface Properties, Interpretation

Technical report describing tailoring DOE methodology to the offshore Cameron, E. et al., Estimating Carbon Storage

Resources in Offshore Geologic Environments; NETL-TRS-14-2018; NETL Technical Report Series p 32. DOI: 10.18141/1464460

Interpreted >650 petrophysical well logs for storage resource parameters

- Spans 21 geologic domains, as defined by Subsurface Trend AnalysisTM (Mark-Moser et al., 2018; Rose et al., in press)
- Available via Energy Data eXchange (EDX)

DiGiulio, J., Miller, R., Bean, A., Cameron, E., Romeo, L., and Rose, K. Petrophysical Well Log Interpretation Dataset, 2019-04-10, Energy Data Exchange, https://edx.netl.doe.gov

Documented integration of NETL's Offshore Risk Modeling (ORM) suite tools work with CS Offshore Methodology

https://edx.netl.doe.gov/carbonstorage

Task 4 Accomplishments (cont.)

Offshore CO₂ Storage Calculator tool developed with tailored geologic efficiency terms from DOE storage methodology

- Data-driven, with spatial data application for area and density
- Calculates distributions of estimated efficiency and storage resource potential for sand packages
- Initial tool testing uses NETL's Petrophysical Well Log Interpretation Dataset
- Manuscript in prep. on methodology and tool to be submitted to International Journal of Greenhouse Gas Control

https://edx.netl.doe.gov/carbonstorage

ffshore CO2 Stor Help		
ut Parameters C	Output Parameters Check Parameters and Run Calculations	
	Data Table: E:\InputParameters_truncated.csv	
	Define Variable Fields from Data Table	
Net Height: 17_Ne		
Total Height: 17_TH	Volumetric Displacement (%): Base on Lithology/Depositi	iona 👻
	Microscopic Displacement (%): Base on Lithology/Deposit	ion: 👻
Total Porosity	(%): 17_POROSITY	
Define Area Fields (or Calculate Areas with Spatial Data	
O Use Values from		
	Meters^2 Spatial Extent: E:\Domain7.shp	
Net Area:		
Total Area:	Meters^2 Leakage E':tauts.shp Pathway E':saits.shp Shapefiles: E':seeps_polyplumes.shp	<u>+</u>
	Snapenies: IC. (Seeps_polypromessinp	
	Max. Buffer Size: 500 m Min. Buffer Size: 100	m
	Step Buffer Size: 100 m	
	Field or Calculate CO2 Density	
Use Values from	Data Table 🔞 Calculate Values	
Density:	▼ kg/m^3 ▼ Temperature at Seafloor: 5 Celsius ▼	
	Temperature Gradient: 2 C per 1 Kilome	ters 💌
	Top Reservoir Depth: 800 km Bottom Reservoir Depth: 2000	0 km
	th Profile or Calculate Seafloor Depth Profile	
Define Seafloor D	Depth Profile Build Depth Profile with Bathymetry Data	
	h Unit: Meters	
Max. Depth: 60		
	an Depth: 200 m Bathymetry Raster: E:\BathyRaster.tif	

Tool builds distributions for saline efficiency & amount of storage resource by calculating all possible variable combinations

$$\begin{split} & \mathsf{E}_{\mathsf{A}} : \mathsf{Ratio} \text{ of net to total area suitable for storage resource} \\ & \mathsf{E}_{\mathsf{H}} : \mathsf{Ratio} \text{ of net to total thickness of formations suitable for storage} \\ & \mathsf{E}_{\Phi} : \mathsf{Ratio} \text{ of effective porosity to total porosity} \\ & \mathsf{E}_{\mathsf{d}} : \mathsf{Volumetric} \text{ and microscopic displacement factors} \\ & \mathsf{E}_{\mathsf{saline}} : \mathsf{Storage efficiency} \\ & \mathsf{A}_{\mathsf{T}} : \mathsf{Total} \text{ area suitable for storage} \\ & \mathsf{H}_{\mathsf{T}} : \mathsf{Gross thickness of suitable formations} \\ & \Phi_{\mathsf{T}} : \mathsf{Total porosity} \\ & \rho : \mathsf{Density of CO}_2 \text{ at pressure and temperature} \\ & \mathsf{G}_{\mathsf{CO}_2} : \mathsf{Amount of storable CO}_2 \end{split}$$

Offshore CO₂ Storage Calculator

- Python (version 3.7)
- **Data Table** contains fields for Net and Total Height, and Total Porosity. Other variables (Volumetric and microscopic displacement, net and total area, density) might also be included
- Volumetric and Microscopic Displacement can be based on the lithology & depositional Setting (Gorecki et al., 2009)
- Effective φ based on Gorecki et al. 2009

	Depositional		East				(1-5. com)
Lithology	Environment	A_0/A_1	h _s /h _s	Octf Otor	Ev	Ed	$(1-S_{wirr})$
Clastics	Clastics	0.2-0.8	0.21-0.76	0.64-0.77	0.16-0.39	0.35-0.76	0.44-0.95
Dolomite	Dolomite	0.2-0.8	0.17-0.68	0.53-0.71	0.26-0.43	0.57-0.64	0.71-0.79
Limestone	Limestone	0.2-0.8	0.13-0.62	0.64-0.75	0.33-0.57	0.27-0.42	0.67-0.98
Clastics	Alluvial fan	0.2-0.8	0.21-0.76	0.7-0.82	0.18-0.54	0.32-0.71	0.39-0.89
Clastics	Delta	0.2 - 0.8	0.21-0.76	0.61-0.71	0.19-0.59	0.39 0.81	0.48-1.00
Clastics	Eolian	0.2 - 0.8	0.21-0.76	0.69-0.79	0.12-0.54	0.53-0.80	0.66-1.00
Clastics	Fluvial	0.2 - 0.8	0.21-0.76	0.63-0.77	0.19-0.53	0.34-0.73	0.42-0.90
Clastics	Peritidal	0.2 - 0.8	0.21-0.76	0.60-0.78	0.14-0.58	0.42-0.80	0.52-0.99
Clastics	Shallow shelf	0.2-0.8	0.21-0.76	0.62-0.78	0.18-0.63	0.39-0.82	0.49-1.00
Clastics	Shelf	0.2-0.8	0.21-0.76	0.62-0.74	0.20-0.59	0.41-0.84	0.51-1.00
Clastics	Slope basin	0.2-0.8	0.21-0.76	0.68-0.77	0.12-0.54	0.53-0.80	0.66-1.00
Clastics	Strand plain	0.2-0.8	0.21-0.76	0.64-0.76	0.19-0.58	0.38-0.74	0.47-0.92
Limestone	Peritidal	0.2-0.8	0.13-0.62	0.61-0.75	0.30-0.67	0.37-0.42	0.87-0.97
Limestone	Reef	0.2-0.8	0.13-0.62	0.62-0.77	0.36-0.63	0.28-0.42	0.66-0.98
Limestone	Shallow shelf	0.2-0.8	0.13-0.62	0.69-0.73	0.44-0.72	0.31-0.42	0.71-0.96

ENERGY

Offshore CO2 Storage Calculator	
Help	
nput Parameters Output Parameters Check Parameters and Run Calculations	
Data Table: E:\InputParameters_truncated.csv	–
Define Variable Fields from Data Table	
Net Haght: 17_Net Sand V Meters V	
Volumetric Displacement (%): Base on Lithol	gy/Depositiona 🔻
Actal Height: 17_THK Meters	ogy/Deposition: 🔻
Total Porosity (%): 17_POROSITY	
Define Area Fields or Calculate Areas with statial Data	
C Use Values from Data Table Calculate Values from Spatial Data	
Net Area: Meters^2 Spatial Extent: E:\Domain7.shp	
Total Area: Meters^2 Leakage E:\faults.shp	
Pathway E:\salts.shp Shapefiles: E:\seeps_polyplumes.shp	-
Buffer Unit: Meters	1
Max. Buffer Size: 500 m Min. Buffer	ize: 100 m
Step Buffer Size: 100	n
Define CO2 Density Field or Calculate CO2 Density	
C Use Values from Data Table Calculate Values	
Density; 🖉 kg/m^3 🗸 Temperature at Seafloor: 5 Celsius	_
Temperature Gradient: 2 C per 1	Kilometers 🔻
Top Reservoir Depth: 800 km Bottom Reservoir	epth: 2000 km
Define Seafloor Depth Profile or Calculate Seafloor Depth Profile	
C Define Seafloor Depth Profile Build Depth Profile with Bathymetry Data	
	_
Depth Unit: Meters Raster Depth Unit: Meters	
Aax, Depth; 600 m Min. Depth; 0 m Spatial Extent: E:\Domain7.shp	
Mean Death: 200 m Bathymetry Raster: E:\BathyRaster.tif	
Mean Depth: 200 m Bathymetry Raster: E:\BathyRaster.th	
Define Effective Porosity Range Based on Geologic Factors (Gorecki et al., 2009) Select Lithology and Depositional Setting: Lithology: Clastics, Depositional Environment: Clastic	

Net and Total Area values can be calculated using spatial data, where net area is the spatial difference between the extent (total area) and buffered leakage pathways

Gorecki, C. D., Sorensen, J. A., Bremer, J. M., Knudsen, D., Smith, S. A., Steadman, E. N., & Harju, J. A. (2009, January). Development of storage coefficients for determining the effective CO2 storage resource in deep saline formations. In SPE International Conference on CO2 Capture, Storage, and

Calculating CO2 Density

Alterations made for the offshore environment, where density (p) is derived as a function of subsea pressure and temperature at a given depth (Cameron et al., 2018)

Offshore CD2 Storage Calculator Fig. Big				
Paper Foremeter Datapet Parameter Datapet Param	CO ₂ density value using depth & (assumes hydr			NATIONAL ENERGY TECHNOLOGY LABORATORY
Important of tasking Important of tasking Important Important Important of tasking Important of tasking	Temperature Grac Top Reservoir Dep or Depth Profile or Calculate Seafloor Depth Profile of Depth Profile Depth Unit: Meters			Water depth is used to define the PT regime. Depth can be extract from a bathymetry dataset, if available
Temperature (C) Pressure (bar) Density (kg/m3) Volume (m3/kg 5 1053.3 1182.4 0.0008457 Density and ph calculated and ch) Internal Energy (kJ/mol) Enthalpy (kJ/mol) Entropy (J/mol) 6 6.0895 10.01 33. ase values are becked using the	 *K) Cv (J/mol*K) Cp (J/mol*K) Sound 42.388 71.747 345 42.415 71.682 259 42.442 71.618 173 42.47 71.555 088 42.497 71.494 004 42.525 71.434 	Spd. (m/s) Joule-Thomson (K/bar) 1147.2 -0.026536 1151.8 -0.026681 1156.3 -0.026823 1160.7 -0.026962 1165.1 -0.027097 1169.5 -0.027097	Viscosity (uPa*s) Therm. Cond. (W/m*K) Phase 225.25 0.18644 liquid 226.64 0.18711 liquid 228.02 0.18777 liquid 229.4 0.18843 liquid 230.78 0.18908 liquid 232.15 0.18973 liquid

Density and phase values are
calculated and checked using the
Thermophysical Properties of Fluid
Systems Model from the National
Institute of Standard's and Technology (Lemmon et al., 2019)

5	1253.3	1206.4	0.00082889	5.8306	10.403	
5	1266.7	1207.9	0.00082786	5.8146	10.43	
5	1280	1209.4	0.00082684	5.7987	10.457	
5	1293.3	1210.9	0.00082583	5.783	10.484	
5	1306.7	1212.4	0.00082484	5.7674	10.511	
5	1320	1213.8	0.00082385	5.752	10.538	
5	1333.3	1215.3	0.00082287	5.7366	10.565	
5	1346.7	1216.7	0.0008219	5.7215	10.593	
5	1360	1218.1	0.00082095	5.7064	10.62	

m	ol*K)	Cv (J/mol*K)	Cp (J/mol*K)	Sound Spd. (m/s)	Joule-Thomson (K/bar)	Viscosity (uPa*s)	Therm. Cond. (W/m*K)	Phase
3	3.432	42.388	71.747	1147.2	-0.026536	225.25	0.18644	liquid
	3.345	42.415	71.682	1151.8	-0.026681	226.64	0.18711	liquid
	3.259	42.442	71.618	1156.3	-0.026823	228.02	0.18777	liquid
	3.173	42.47	71.555	1160.7	-0.026962	229.4	0.18843	liquid
	3.088	42.497	71.494	1165.1	-0.027097	230.78	0.18908	liquid
	3.004	42.525	71.434	1169.5	-0.02723	232.15	0.18973	liquid
	32.92	42.552	71.376	1173.9	-0.02736	233.52	0.19038	liquid
	2.837	42.579	71.319	1178.2	-0.027487	234.89	0.19102	liquid
	2.755	42.607	71.263	1182.5	-0.027611	236.26	0.19166	liquid
	2.673	42.634	71.209	1186.7	-0.027733	237.62	0.1923	liquid
	2.592	42.662	71.156	1191	-0.027852	238.98	0.19293	liquid
	2.511	42.689	71.104	1195.1	-0.027968	240.34	0.19356	liquid
	2.431	42.717	71.053	1199.3	-0.028083	241.7	0.19419	liquid
	2.351	42.744	71.003	1203.4	-0.028194	243.05	0.19482	liquid
	2.272	42.772	70.954	1207.5	-0.028304	244.41	0.19544	liauid

emmon, E.W., McLinden, M.O., and Friend, D.G., "Thermophysical Properties of Fluid Systems" in NIS Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/T4D303, (retrieved August 21, 2019)

5								
31.809	42,937	70,683	1231.5	-0.028916	252.48	0.1991	liquid	
51.009	42.957	70.065	1251.5	-0.028910	232.40	0.1991	liquiu	
31.733	42.964	70.641	1235.4	-0.029012	253.82	0.1997	liquid	
31.658	42.992	70.6	1239.3	-0.029105	255.16	0.20029	liquid	18
31.583	43.019	70.56	1243.2	-0.029196	256.49	0.20089	liquid	

Tool Outputs

Outputs:

- Output Data Table containing all variable combinations, where each field represents a variable
- Statistical Report with P10, P50, and P90 values for saline efficiency and resource storage potential

Optional outputs:

ENERGY

- Distribution graphs for any of the variables used calculate saline efficiency and resource storage potential
- Net area and buffered
 leakage pathway shapefiles

 $\mathbf{E}_{saline} = \mathbf{E}_A \mathbf{X} \mathbf{E}_H \mathbf{X} \mathbf{E}_{\phi} \mathbf{X} \mathbf{E}_v \mathbf{X} \mathbf{E}_d$ $\mathbf{G}_{CO_2} = \mathbf{A}_T \mathbf{X} \mathbf{H}_T \mathbf{X} \mathbf{\Phi}_T \mathbf{X} \mathbf{\rho} \mathbf{X} \mathbf{E}_{saline}$

Mean = 2.6272830191319242e-11 P10 = 1.3778641485506553e-12, P50 = 1.2319940698095855e-11, P90 = 6.614205434475917e-11

Fall 2019 Milestones & Deliverables

- In parallel with testing the tool, evaluate robustness of offshore efficiency factors for saline reservoir assessment for offshore regions in additional offshore regions
- Submit manuscript on methodology and tool to International Journal of Greenhouse Gas Control (Romeo et al., in preparation)

Romeo, L., Thomas, R., Rose, K., Bauer, J. Data-driven and spatially informed offshore carbon storage efficiency and storage resource methodology. International Journal of Greenhouse Gas Control. In preparation

Number	Expected Completion Date	Description					
1	06/29/2018	M.4.1 – Submit the final TRS report of the Carbon Storage Portfolio page or	lescribing the Offshore Carbon Storage Methodology for Saline Reservoirs to The EDX for release.				
2	08/31/2018		elop carbon storage prediction surfaces based on well log attributes for multiple domains in the GOM.				
3	11/30/2018		ript of the NETL offshore carbon storage methodology.				
4	03/29/2019	Methodology and Screen Tool to imp	ocument how integration of NETL's Cumulative Spatial Impact Layer tool can work with CS Offshore ethodology and Screen Tool to improve CS assessment outcomes				
5	09/30/2019	GOM, offshore regions.	iency factors for saline reservoir assessment of offshore reservoirs in non-				
6	3/31/2020	Release updated versions of advance	ed spatial data computing tool, offshore CS efficiency factors, via EDX				
Data Net Height: 17_Net Sanc Total Height: 17_THK Total Porosity (%): Define Area Fields or Calc C Use Values from Data Net Area: Total Area: Define CO2 Density Field o Use Values from Data Density:	Volumet Microsco Microsc	v m Data Table mic Displacement (%): Base on Lithology/Deposition ▼ pic Displacement (%): Base on Lithology/Deposition.▼	E CERTA EXChange				
Max. Depth: 600 Mean Dep	in with began		2020 Deliverables Complete tool testing & validation Release versions Offshore CO ₂ Storage Calculator via EDX				
			20				

Task 4 Synergy Opportunities

- Provides the DOE with justifiable carbon storage estimates for use in public **policy and business** investment decisions
- Builds off of carbon storage assessment knowledge & capabilities from domestic & international efforts e.g.
 - United States Geological Survey (USGS)
 - Energy & Environmental Research Center (EERC)
 - NETL
 - Norway, Australia, Japan, Brazil, others
- Leverages big-data, spatio-temporal analytical models and tools from DOE FE's Oil/Gas Program's Offshore Risk Modeling program
 - https://edx.netl.doe.gov/offshore
- Provides offshore storage methodology & datadriven tool for strategic planning by entities and nations worldwide
 - United States, NETL CarbonSafe projects, etc

Mitigate injection risk by leveraging data-driven analyses to constrain favorable vs. unfavorable storage areas

Potential leakage pathways

NETL's ORM

FREND ANALYSIS

suite was initiated in 2011 to support DOE FE32 goals for offshore spill preventior

NETL's

Cumulative TM Spatial Impact Layers Offshore Risk Modeling Suite

BIG DATA LEVERAGED IN ROBUST TOOLS FOR OIL & GAS EXPLORATION AND PRODUCTION

Romeo, L., Wingo, P., Nelson, J., Bauer, J., and Rose, K., Cumulative Spatial Impact Layers, 2019-01-24, DOI: 10.18141/1491843

Romeo, L., Nelson, J., Wingo, P., Bauer, J., Justman, D., and Rose, K. accepted. Cumulative Spatial Impact Layers: a novel multivariate spatio-temporal analytical summarization tool. Transactions in GIS.

Development of Defensible CO₂ Storage Methods & Tools to Quantify Prospective Storage in the Subsurface

Tasks 2 & 3 PI

Angela Goodman

Angela.goodman@netl.doe.gov

Task 4 co-Pl's

Kelly Rose & Lucy Romeo Kelly.rose@netl.doe.gov Lucy.Romeo@netl.doe.gov

For the publications, tools & datasets from these studies please visit: <u>https://edx.netl.doe.gov/</u> <u>carbonstorage</u>

Disclaimer: This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

Acknowledgement: Parts of this technical effort were performed in support of the National Energy Technology Laboratory's ongoing research under the Carbon Storage Field Work Proposal DE-FE-1022403 by NETL's Research and Innovation Center, including work performed by Leidos Research Support Team staff under the RSS contract 89243318CFE000003.

Appendix

- These slides will not be discussed during the presentation, but are mandatory.

Lessons Learned

- Research gaps/challenges.
- Unanticipated research difficulties.
- Technical disappointments.
- Changes that should be made next time.
- Multiple slides can be used if needed.

See project slides above

Project Summary

- Key Findings.
- Next Steps.

See project slides above

Benefit to the Program

• Specific Goals & Benefits

- 1. Develop and validate technologies to ensure for 99 percent storage permanence.
- 2. Develop technologies to improve reservoir storage efficiency while ensuring containment effectiveness.
- Support industry's ability to predict CO2 storage capacity in geologic formations to within ±30 percent.
- 4. Develop Best Practice Manuals (BPMs) for monitoring, verification, accounting (MVA), and assessment; site screening, selection, and initial characterization; public outreach; well management activities; and risk analysis and simulation.

Project Overview

Goals and Objectives

 Resource Assessments: Provides the Department of Energy (DOE) defensible carbon dioxide (CO2) storage methods and tools to quantify prospective storage for the Carbon Storage Atlas, National Energy Technology Laboratory's (NETL's) Regional Carbon Sequestration Partnership (RCSP), and CARBONSAFE projects.

Organization Chart

 Resource Assessments theme will provide DOE defensible CO2 storage methods and tools to quantify prospective storage for the Carbon Storage Atlas, the NETL's Regional Carbon Sequestration Partnership (RCSP), and CARBONSAFE projects.

Task 2. Develop Defensible DOE Methods, Tools, and Storage Efficiency for CO2 Storage in Shale Systems Task 3. Develop Defensible DOE Methods, Tools, and Storage Efficiency for CO2 Storage in ROZs Task 4. Developing Defensible DOE Methods, Tools, and Storage Efficiency for CO2 Storage in Offshore Reservoirs

Gantt Chart

 Provide a simple Gantt chart showing project lifetime in years on the horizontal axis and major tasks along the vertical axis. Use symbols to indicate major and minor milestones. Use shaded lines or the like to indicate duration of each task and the amount of work completed to date.

Task 2: Project Timeline Overview

13:TH

ATIONAL

Go / No-Go

Timeframe

FRL Score

Project

Completion

Task 3: Project Timeline Overview

2017 (\$40K)

3

Develop Defensible DOE Methods, Tools, and Storage Efficiency for CO₂ Storage in ROZs (PI: Angela Goodman)

2018 (\$191k)

12/2018

2019 (\$186k)

12/2019

2020

3/2020

2021

Task 4: Project Timeline Overview

Developing Defensible DOE Methods, Tools, and Storage Efficiency for CO₂ Storage in Offshore Reservoirs (PI: Kelly Rose)

Go / No-Go

Timeframe

#

TRL Score

Project

Completion

Milestone

2016 (\$k) 12 3 6 9		2017 (\$180k*) 12 3 6 9 12 3	2018 (\$191k) 6 9 12 3	2019 (\$ 6 9	193k) 12 3	2020 (\$200k**) 6 9 12 3		
3						④		
06/29/18 08/31/18 11/30/18 03/29/19 09/30/19 03/31/20								
Number	Expected Completion Date	Description		-	(Go / No-Go		
1	06/29/2018	M.4.1 – Submit the final TRS report describing the Offshore Carbon Portfolio page on EDX for release.	Storage Methodology for Saline Reservoirs to		Past milestones 4 & 6, scope proposed is dependent on Program input and alignment to			
2	08/31/2018	Develop carbon storage prediction surfaces based on well log attributes for multiple domains in the GOM. needs.						
3	11/30/2018	Begin peer reviewed journal manuscript of the NETL offshore carbon storage methodology.						
4	03/29/2019	Document how integration of NETL's Cumulative Spatial Impact Layer tool can work with CS Offshore Methodology and Screen Tool to improve CS assessment outcomes				 *2017 funds spanned 18 months of work, 10/01/2016 through 03/31/2018 **Pending outcome of go/no-go milestone 7 		
5	09/30/2019	Evaluate robustness of offshore efficiency factors for saline reservoir assessment of offshore reservoirs in non-GOM, offshore regions.						
6	10/31/2019	Finalize development of and submit a manuscript to a journal for peer-review for saline offshore CO2 methodology						
7	10/31/2019	Evaluate potential of adapting saline offshore methodology for use with Offshore CO ₂ EOR storage approach						
8	03/31/2020	If appropriate release advanced data computing tool for offshore CS efficiency factors, spatial analysis & SCREEN via EDX app store.						

Impact

 2018, TRS report describing CS methodology for saline reservoirs & database of offshore efficiency factors for geol terms Cameron, E., Thomas, R., Rose, K., Galer, S., Disenhof, C., Mark-Moser, M., Bauer, J., in review, Estimating Carbon Storage Resources in Offshore Saline Geologic Environments, NETL-TRS-X-2018, 34 pgs. 2018, a beta Python scripted tool was developed to automate the methodology for calculating offshore saline reservoirs efficiency and potential 2019, Journal manuscript submitted for peer review describing Offshore CS in saline reservoir methodology 2020, Release versions 1 of advanced spatial data computing tool offshore CS efficiency factors outside GOM, via EDX Integration of carbon storage tools, data and models for resource assessment via EDX to improve external stakeholder access and utility 	Key Accomplishments/Deliverables	Value Delivered
	 geol terms Cameron, E., Thomas, R., Rose, K., Galer, S., Disenhof, C., Mark-Moser, M., Bauer, J., in review, Estimating Carbon Storage Resources in Offshore Saline Geologic Environments, NETL-TRS-X-2018, 34 pgs. 2018, a beta Python scripted tool was developed to automate the methodology for calculating offshore storage resource efficiency and potential 2019, Journal manuscript submitted for peer review describing Offshore CS in saline reservoir methodology 2020, Release versions 1 of advanced spatial data computing tool offshore CS efficiency factors outside GOM, 	 Tailored geologic efficiency terms from DOE carbon storage method that improve characterization of offshore carbon storage reservoirs Adaptation of data computing tools and algorithms to support efficient and data-driven technical assessment of offshore carbon storage resources through integration of NETL's spatial, analytical tools (first developed under FE32 projects) Integration of carbon storage tools, data and models for resource assessment via EDX to improve

Bibliography

- Alexander Azenkeng, Blaise A.F. Mibeck, Bethany A. Kurz, Charles D. Gorecki, Evgeniy M. Myshakin, Angela L. Goodman, Nicholas A. Azzolina, Kurt E. Eylands, and Shane K. Butler An Image-based Equation for Estimating the CO2 Storage Resource Capacity of Organic-rich Shale Formations in preparation
- Cameron, E.; Thomas, R.; Bauer, J.; Bean, A.; DiGiulio, J.; Disenhof, C.; Galer, S.; Jones, K.; Mark-Moser, M.; Miller, R.; Romeo, L.; Rose, K. <u>Estimating Carbon Storage Resources</u> in Offshore Geologic Environments; NETL-TRS-14-2018; NETL Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Albany, OR, 2018; p 32. DOI: 10.18141/1464460
- DiGiulio, J., Miller, R., Bean, A., Cameron, E., Romeo, L., and Rose, K. Petrophysical Well Log Interpretation Dataset, 2019-04-10, Energy Data Exchange, https://edx.netl.doe.gov
- Goodman, Angela; Fukai, Isis; Dilmore, Robert; Frailey, Scott; Bromhal, Grant; Soeder, Dan; Gorecki, Charlie; Peck, Wesley; Rodosta, Traci; Guthrie, George "Methodology for assessing CO₂ storage potential of organic-rich shale formations" **Energy Procedia** 2014, *63*, 5178-5184.
- Goodman, A., Sanguinito, S., Levine, J. Prospective CO₂ Saline Resource Estimation Methodology: Refinement of Existing DOE-NETL Methods Based on Data Availability, International Journal of Greenhouse Gas Control, 2016, *54*, 242-249.
- Levine, J. S., Fukai, I. Soeder, D. J., Bromhal, G., Dilmore, R.M., Guthrie, G. D., Rodosta, T., Sanguinito, S., Frailey, S., Gorecki, D., Peck, W. and Goodman, A.L. "U.S. DOE NETL Methodology for Estimating the Prospective CO₂ Storage Resource of Shales at the National and Regional Scale" International Journal of Greenhouse Gas Control, 2016, *51*, 81-94.
- Myshakin, E., Singh, H., Sanguinito, S., Bromhal, G., Goodman, A. Flow Regimes and Storage Efficiency of CO₂ Injected into Depleted Shale Reservoir **Fuel**, 2019, 246, 169-177
- Romeo, L., Thomas, R., Rose, K., Bauer, J. Data-driven and spatially informed offshore carbon storage efficiency and storage resource methodology. International Journal of Greenhouse Gas Control. In preparation, Energy Data Exchange, https://edx.netl.doe.gov
- Romeo, L, Rose, K., Bauer, J., Thomas, R., in prep, Offshore CO2 Storage Calculator Tool, Energy Data Exchange, https://edx.netl.doe.gov
- Sanguinito, S., CO2-SCREEN (Version 2.0), 2019-06-19, Energy Data eXchange, https://edx.netl.doe.gov/dataset/co2-screen-version-2-0
- Sanguinito, S., Singh, H., Myshakin, E., Goodman A., Dilmore, R., Grant, T., Morgan, D., Bromhal, G. "U.S. DOE NETL methodology for estimating the prospective CO₂ storage resource of residual oil zones at the national scale" under review Int. J. Greenhouse Gas Control
- Sanguinito, S., Goodman, A., Sams, J., CO₂-SCREEN Tool: Application to the Oriskany Sandstone to Estimate Prospective CO2 Storage Resource International Journal of Greenhouse Gas Control, 2018, 75, 180-188.
- Myshakin, E., Singh, H., Sanguinito, S., Bromhal, G., Goodman, A. Simulated Efficiency Factors for Estimating the Prospective CO₂ Storage Resource of Shales, International Journal of Greenhouse Gas Control, 2018, *76*, 24–31
- Sanguinito, S., Goodman, A., Levine, J.S., 2016, NETL CO₂ Storage Prospective Resource Estimation Excel aNalysis (CO2-SCREEN) User's Manual; NETL-TRS-X-2016;
 Technical Report Series; U.S. Department of Energy, National Energy Technology Laboratory: Pittsburgh, PA, 2016; p. 31. https://edx.netl.doe.gov/carbonstorage/?page_id=914