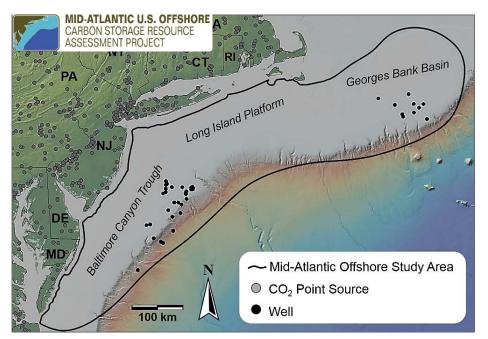
Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment DE-FE0026087

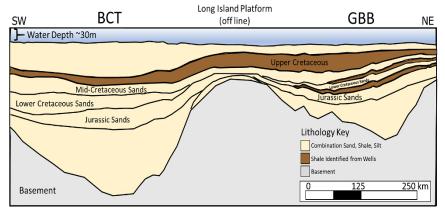
MID-ATLANTIC U.S. OFFSHORE CARBON STORAGE RESOURCE ASSESSMENT PROJECT

Neeraj Gupta, Senior Research Leader

Battelle, Columbus, Ohio, USA

U.S. Department of Energy National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 26-30, 2019

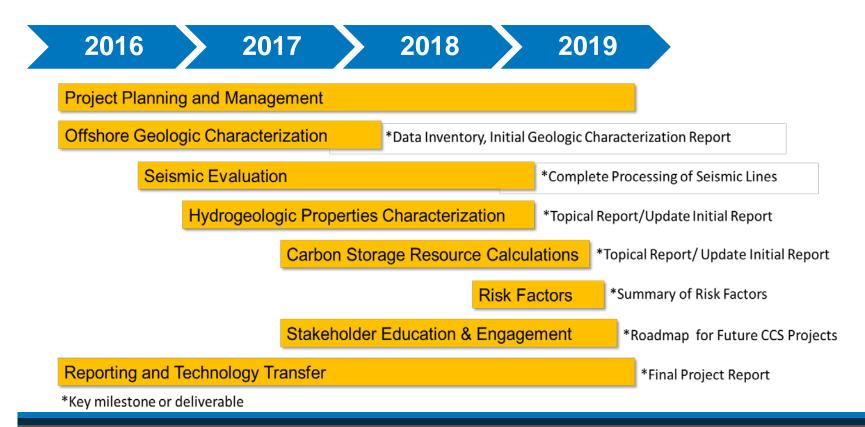

Presentation outline


- Project Overview & Org.
- Technical Status
- Accomplishments
- Lessons Learned
- Synergy Opportunities
- Project Summary

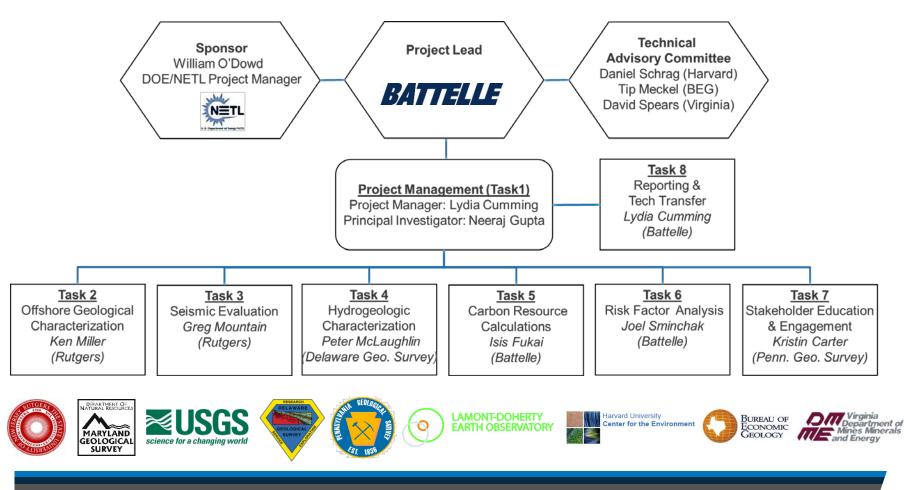
Study Area: ~171,000 km² (44 wells)

- Georges Bank Basin (GBB)
- Long Island Platform
- Baltimore Canyon Trough (BCT)

Focused on saline sand reservoirs and seals 200 - 3000 m deep



Technical Status


- Objective = Complete systematic C-Storage Resource Assessment of the U.S. Mid-Atlantic offshore coast region.
- Technical scope has been completed. Final Technical Report Submitted August 13, 2019.

Project organization and team members

• The project consisted of 8 tasks, with a diverse team of experts responsible for project implementation

Project team – collaborating seamlessly across multiple institutes

- Lamont Doherty Earth Obs. Dave Goldberg, Angela Slagle, Will Fortin
- Delaware Geol. Surv. Pete McLaughlin, Moji KunleDare, June Hazewski, Noam Kessing, David Wunsch
- Rutgers Univ. Greg Mountain, Ken Miller, Stephen Graham, Alex Adams, John Schmelz, Kim Baldwin, David Andreasen, Chris Lombardi (deceased)
- Maryland Geol. Surv. David Andreasen, Andy Staley, Katie Knippler, Richard Ortt
- Pennsylvania Geol. Surv. Kristin Carter, Brian Dunst, Morgan Lee, Ryan Kassak, Danial Reese
- US Geol. Surv. Guy Lang, Uri ten Brink
- **Battelle** Neeraj Gupta, Lydia Cumming, Andrew Burchwell, Joel Sminchak, Isis Fukai, Kathryn Johnson, Laura Keister, Christa Duffy, Heather McCarren
- Advisors Daniel Schrag (Harvard), Tip Meckel (TX BEG), David Spears (VA Geo. Surv.)

Task 2 - Geologic Characterization

Large coordinated group effort completed to categorize & preserve offshore samples & data for geologic characterization in 3 sub-regions: Georges Bank Basin (GBB); Long Island Platform; Baltimore Canyon Trough (BCT)

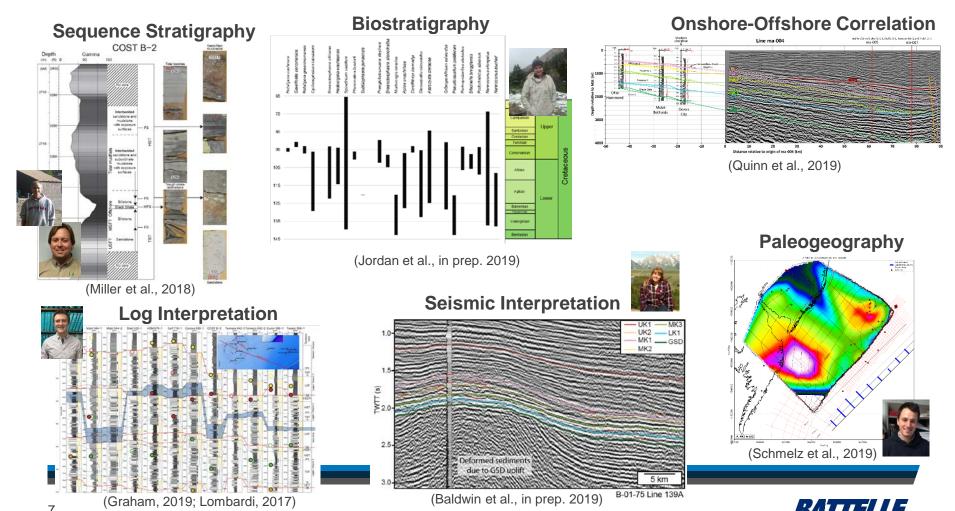
Sample Inventory

- ~2,300 core samples
- ~5,000 thin-sections
- ~97,000 drill cuttings

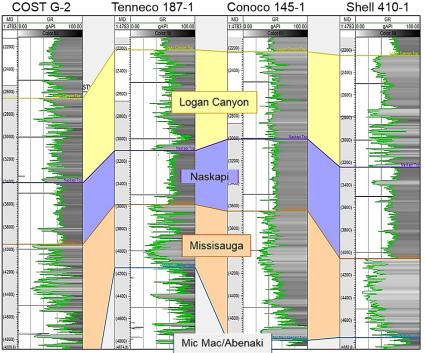
Data Compilation

- 2,500 logs in well database
- Over 1,000,000 ft. of log data digitized
- 5,973 porosity and 5,729 permeability core data points* from 184 reports

*Includes all raw & derived entries reported at all depths for 41 out of 44 wells in the study area



Task 2 - Geologic Characterization


 Data used to integrate sequence stratigraphy, sequence boundaries, log interpretation, onshore-offshore correlation, paleogeography, & seismic interpretations (no small task!).

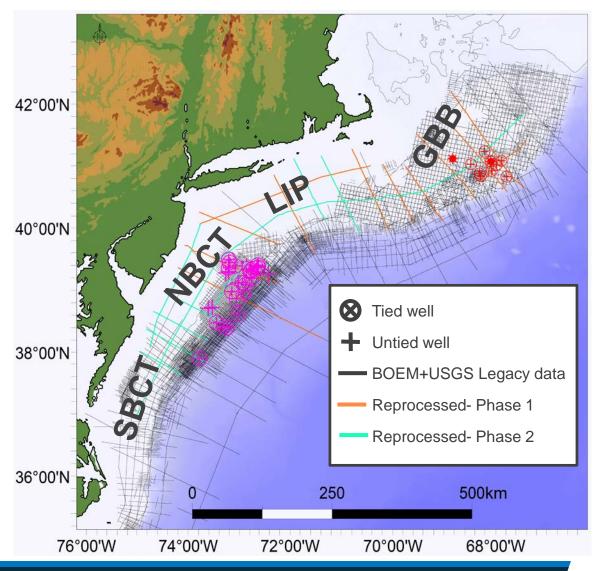
Task 2 - Geologic Characterization

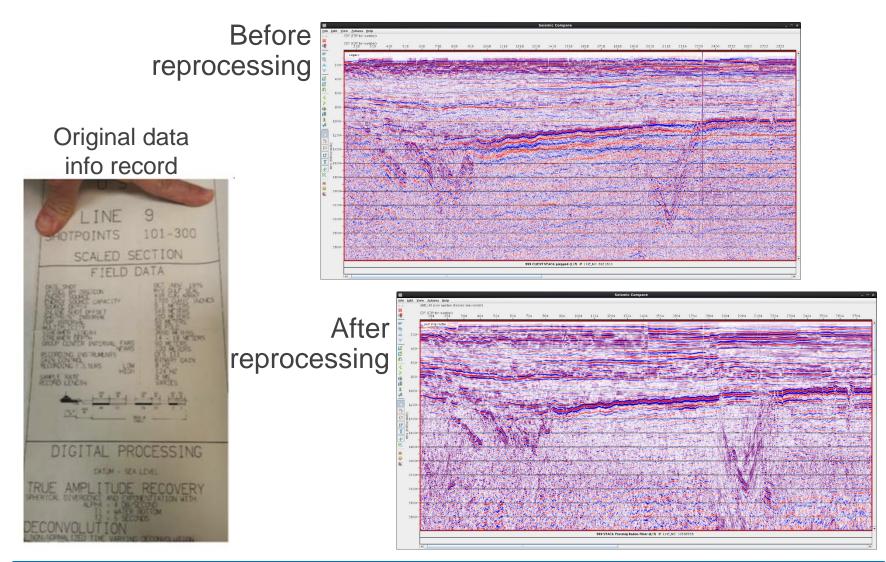
 Geologic characterization of deep saline formations & caprocks completed to define the geologic storage framework.

Lithostratigraphic & sequence stratigraphy integrated to define storage zones

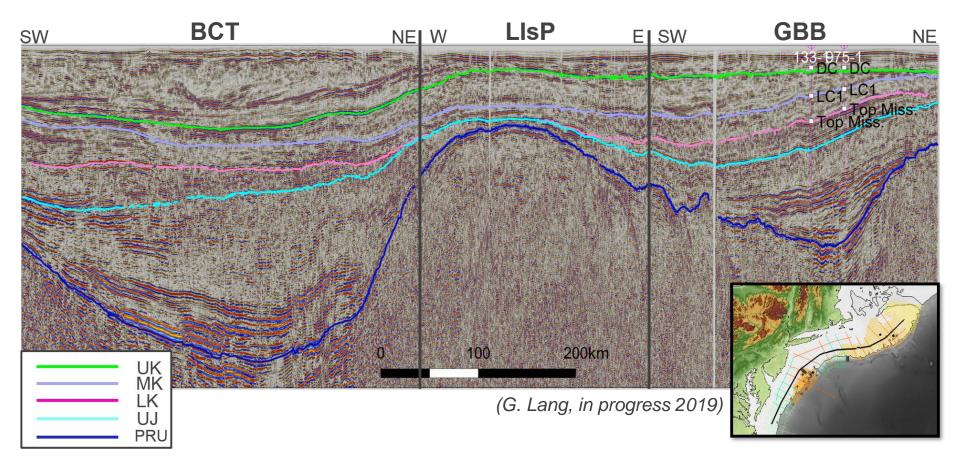
Identified three potential storage targets and four regional caprocks

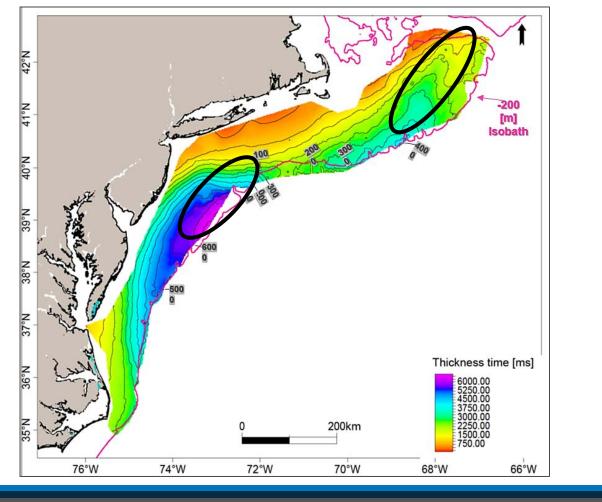
Age	Seal or Reservoir	Formation Name*	Depth (ft.)	Thickness (ft.)	
Upper	Seal	Dawson Canyon	996 – 6,831	556 – 3,128	
Cretaceous	Reservoir	Logan Canyon	2,208 - 9,561	174 - 2,227	
Lower	Seal	Naskapi	3,022 – 10,557	49 – 1,481	
Cretaceous	Reservoir	Missisauga	3,583 - 10,639	553 - 4,542	
	Seal	Mic Mac	4,116 - 13,591	331 - 13,591	
Upper Jurassic	Reservoir	Mohawk	4,924 - 15,082	5,274 - 7,742	
JUI dSSIC	Base/Seal	Mohican/Iroquois	≥ 9738	-	


Tops picked for all 44 wells in study area

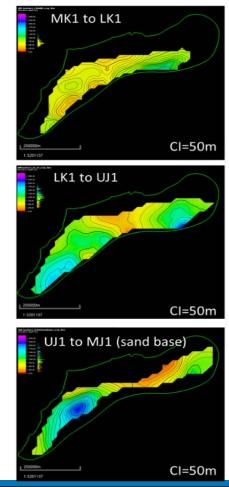

Task 3 – Seismic Evaluation

- Seismic data was reprocessed and used to constrain formation geometry, continuity, and geologic structures
- 4,000 km of USGS legacy data from 1970s (21 seismic lines)
- Of 39 wells, 33 were tied to seismic

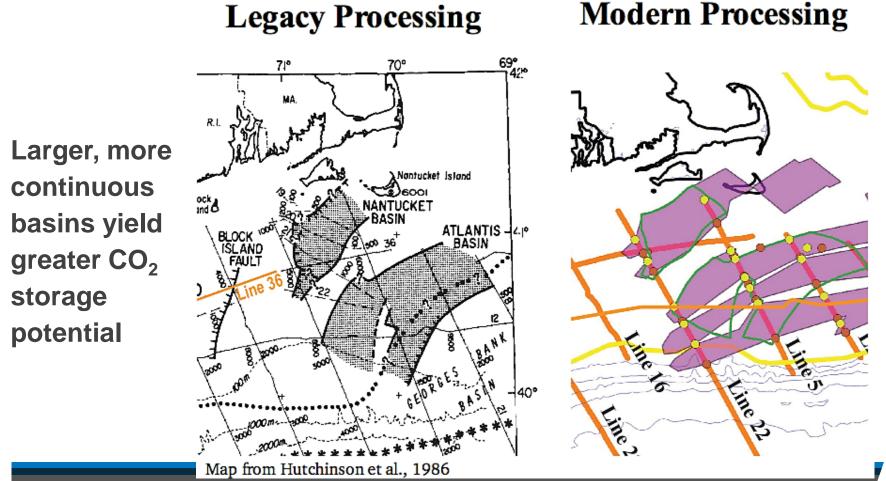

Task 3 – Seismic Evaluation


Task 3 – Seismic Evaluation

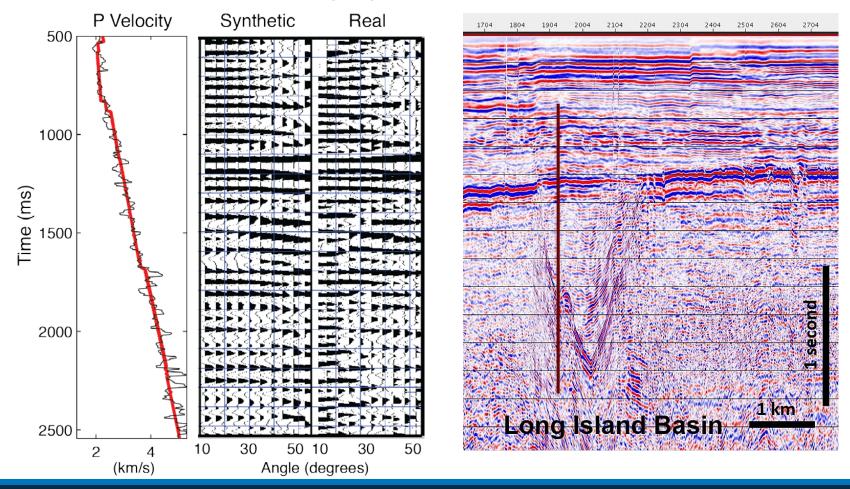
USGS Line 12 – "the game changer"



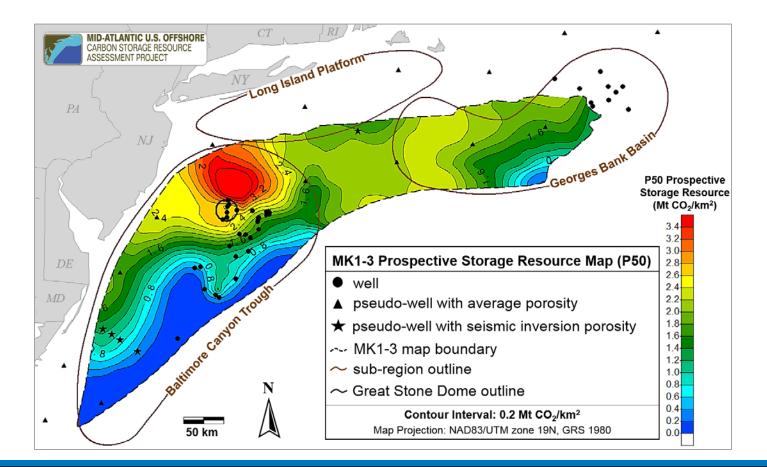
Maps generated to constrain formation geometry and continuity.



Isochore Thickness Maps



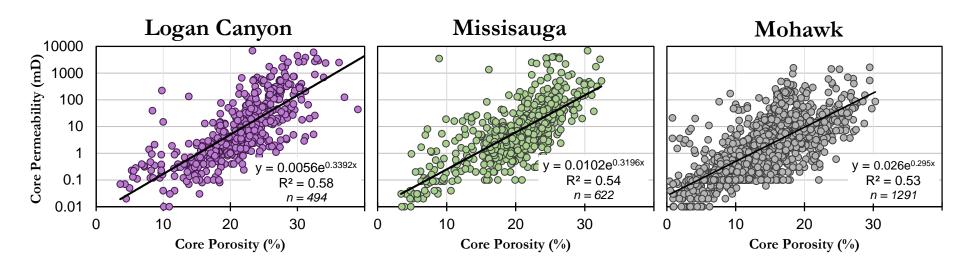
 New data processing capabilities and seismic inversion techniques were used to improve



• Seismic inversion provides virtual well control points where there are few or no wells to confirm rock properties.

• Well control points or pseudo wells important for Long Island Platform and Georges Bank Basin, and Western Baltimore Canyon Trough.

Task 4 – Hydrogeologic Characterization (Cont.)

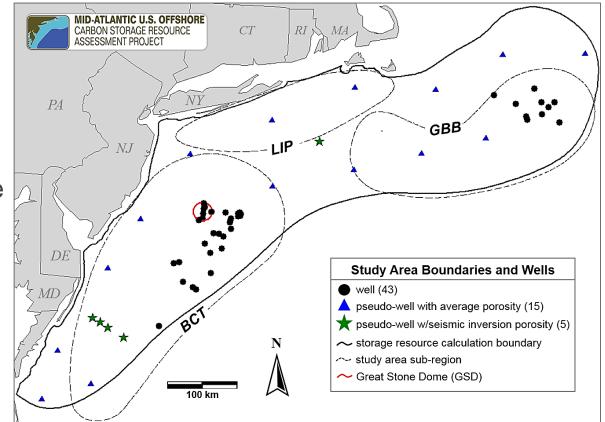

 Hydrologic and petrophysical properties of offshore deep saline formations and caprocks supplemented with new tests on core/cuttings.

Well name	Permeability		Porosity	Grain density	Thin	XRF	XRD	SEM
	(probe)	(plug)	(plug)	(plug)	section		7	·
Conoco 145-1					1	1	1	
COST B-2	17	15	15	15	18	15	17	5
COST B-3	12	6	6	6	13	13	13	4
COST G-1	8	4	4	4	7	5	6	2
COST G-2	3	2	2	2	2	2	2	
Exxon 599-1	2	1	1	1	3	4	3	
Exxon 684-1	10	4	4	4	10	10	8	4
Exxon 684-2	1	1	1	1	1	1		
Mobil 544-1	12	1	1	1	12	11	12	1
Shell 273-1	2				2	2	1	
Shell 372-1	2				2	1	1	
Shell 586-1	2	1	1	1	1	1	1	1
Shell 587-1	1				1	1	1	
Shell 632-1	3	1	1	1	3	3	3	
Shell 93-1	1				1	1	1	
Texaco 598-1	3	3	3	3	3	3	3	1
Texaco 642-1	2	1	1	1	2	2	2	
Totals	81	40	40	40	82	76	75	18

Task 4 – Hydrogeologic Characterization

 Hydrologic and petrophysical properties of offshore deep saline formations and caprocks were cataloged and characterized

Core porosity and permeability data indicate offshore deep saline formations of interest have storage reservoir potential



Task 5 – Storage Resources

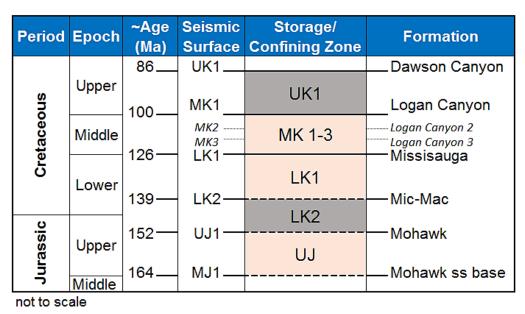
Objective: systematically quantify and evaluate geologic CO_2 storage resources in the Mid-Atlantic U.S. offshore study region

Approach:

- 1) Data integration and mapping
- 2) Regional-scale volumetric storage resource calculations
- Local-scale dynamic injection and storage simulation

*Sanguinito et al., 2016; https://edx.netl.doe.gov/organization/co2-screen

Potential Deep Saline Storage Zones: Middle Cretaceous Logan Canyon sandstone (MK1-3); Lower Cretaceous Missisauga sandstone (LK1) and Upper Jurassic Mohawk sandstone (UJ1)


caprock (shale)

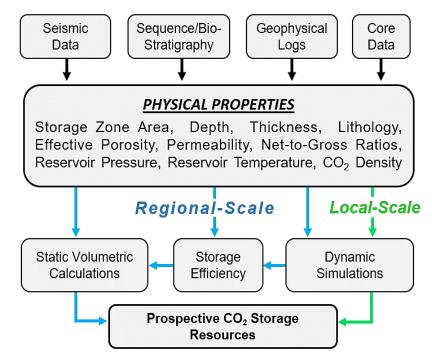
storage zone (sandstone)

approximate/inferred

Screening Criteria:

- Formation depth > 1,000 m to ensure supercritical CO₂ storage, minimize softsediment deformation risk
- Caprock to prevent vertical CO₂ migration
- Hydrogeologic traps to prevent lateral CO₂ migration

Offshore storage zones and caprocks defined by chrono-, litho-, and seismic sequence stratigraphy (Baltimore Canyon Trough)



Data integrated into regional maps

to represent reservoir pore volume available for CO_2 storage

Regional-Scale Static Estimates:

- DOE-NETL volumetric method¹ and CO₂-SCREEN Tool²
- Total pore volume x storage efficiency: quantity of CO₂ able to be stored
- Grid-based, stochastic; uncertainty defined statistically (e.g. P10, P50, P90)

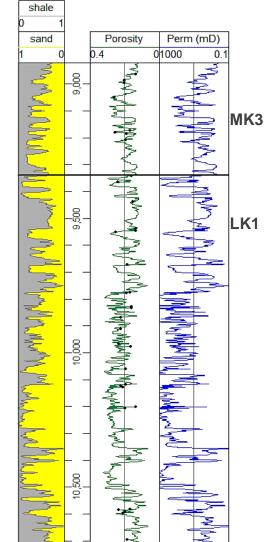
Schematic showing data input and workflow used for estimating offshore CO_2 storage resources.

Local-Scale Dynamic Simulation: CO₂ injection and storage performance given specific pressure, time, and operational constraints

Average porosities: 21 – 29%

Average permeabilities: 45 – 339 mD

Values are within range of those reported for other offshore reservoirs used for commercial-scale CO₂ storage¹

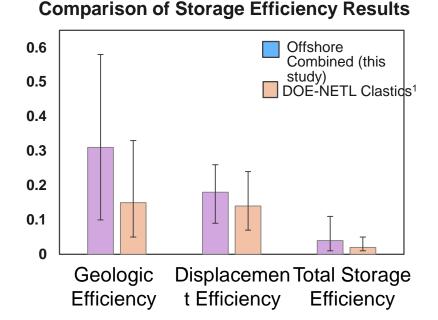

Regional averages for total storage zone (SS, $\geq 10 \text{ mD}$)

Storage Zone	Area (km²)	Thicknes s (m)	Effective Porosity (%)	Permeabilit y (mD)*	CO ₂ Density (kg/m³)
MK1-3	92,928	181	23	71	815
LK1	117,493	154	26	65	809
UJ1	134,578	211	21	45	796

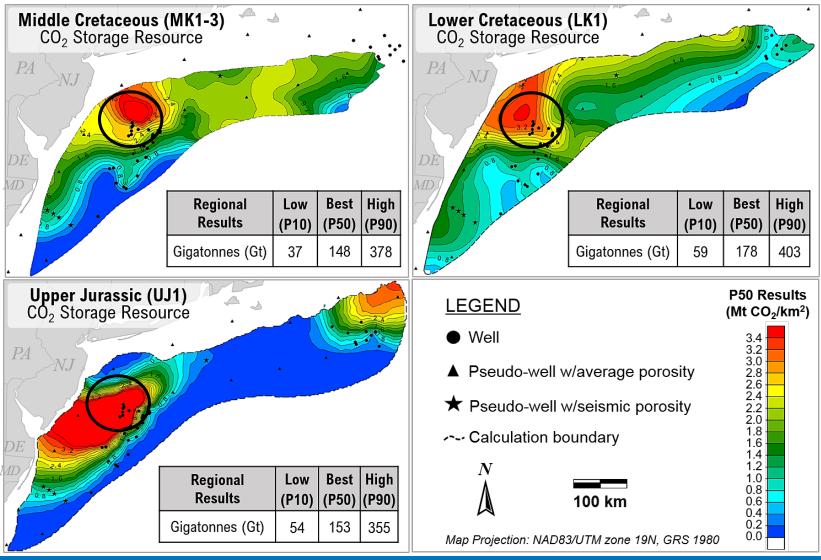
*geometric mean Regional averages for net storage zone (SS, ≥100 mD)

Storage Zone	Area (km²)	Thicknes s (m)	Effective Porosity (%)	Permeabilit y (mD)*
MK1-3	79,918	55	27	314
LK1	117,102	40	29	339
UJ1	88,372	32	25	264

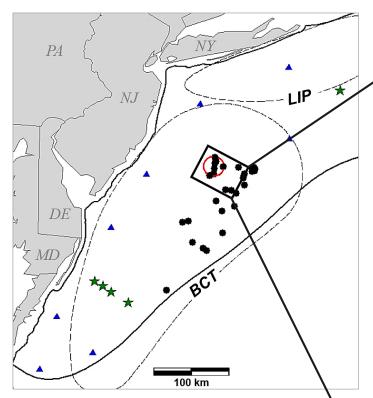
1900 Metric mean Directorate (2011; 2013)



Offshore-Specific Storage Efficiencies

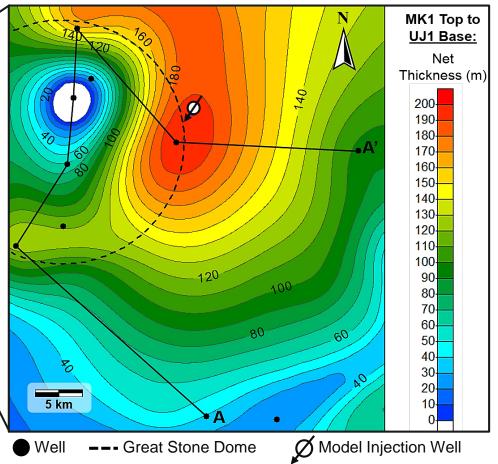

- Geologic Efficiency = 10 58%
- Displacement Efficiency = 9 26%
- Total $E_{saline} = 1 11\%$

Higher medians (P50) and larger ranges than storage efficiencies reported for onshore clastic formations



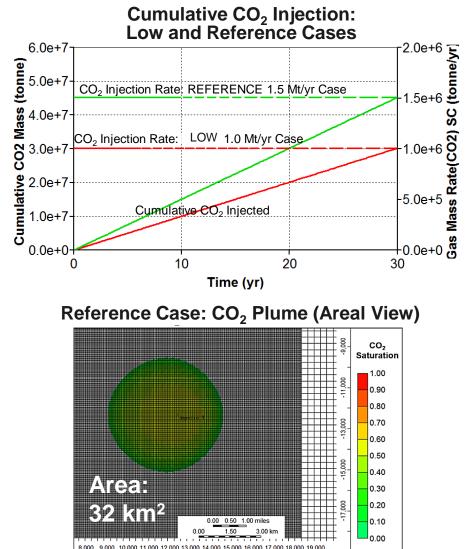
Geologic Efficiency			Displacement Efficiency			Total Storage Efficiency (E _{saline})			
P10	P50	P90	P10	P50	P90	P10	P50	P90	
0.09	0.36	0.70	0.09	0.18	0.26	0.01	0.05	0.13	
0.12	0.36	0.59	*	*	*	0.02	0.05	0.11	
0.08	0.19	0.38	*	*	*	0.01	0.03	0.07	
0.10	0.31	0.58	0.09	0.18	0.26	0.01	0.04	0.11	
0.05	0.15	0.33	0.07	0.14	0.24	0.01	0.02	0.05	
	P10 0.09 0.12 0.08 0.10	P10 P50 0.09 0.36 0.12 0.36 0.08 0.19 0.10 0.31	P10 P50 P90 0.09 0.36 0.70 0.12 0.36 0.59 0.08 0.19 0.38 0.10 0.31 0.58	Geologic Efficiency E P10 P50 P90 P10 0.09 0.36 0.70 0.09 0.12 0.36 0.59 * 0.08 0.19 0.38 * 0.10 0.31 0.58 0.09	Geologic Efficiency Efficienc P10 P50 P90 P10 P50 0.09 0.36 0.70 0.09 0.18 0.12 0.36 0.59 * * 0.08 0.19 0.38 * * 0.10 0.31 0.58 0.09 0.18	Geologic Efficiency Efficiency P10 P50 P90 P10 P50 P90 0.09 0.36 0.70 0.09 0.18 0.26 0.12 0.36 0.59 * * * 0.08 0.19 0.38 * * * 0.10 0.31 0.58 0.09 0.18 0.26	Geologic Efficiency Efficiency Fficiency P10 P50 P90 P10 P50 P90 P10 0.09 0.36 0.70 0.09 0.18 0.26 0.01 0.12 0.36 0.59 * * * 0.02 0.08 0.19 0.38 * * * 0.01 0.10 0.31 0.58 0.09 0.18 0.26 0.01	Geologic Efficiency Fificiency <t< td=""></t<>	

RATTELLE



- High regional storage resource per unit area (≥ 2.5 MtCO₂/km²)
- Constrained by data from 20 nearby wells w/average spacing ~15 km

Selected Area: Northern Baltimore Canyon Trough near Great Stone Dome (596 km²)

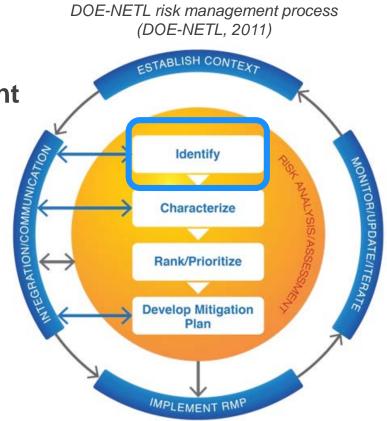

- 3D Site Model: 596 km²
- Vertical Layers: 35
- Injection Duration: 30 years
- Frac Pressure Gradient: 14.7 kPa/m (0.65 psi/ft)

One vertical injection well, three injection rates

Injection (Mt CO ₂ /y	Cum. CO ₂ Stored (Mt)			
High	~1.7	51 Mt		
Reference	1.5	45 Mt		
Low	1.0	30 Mt		

Model injection rates \approx individual emission rates associated w/majority (96%) of nearby CO₂ sources

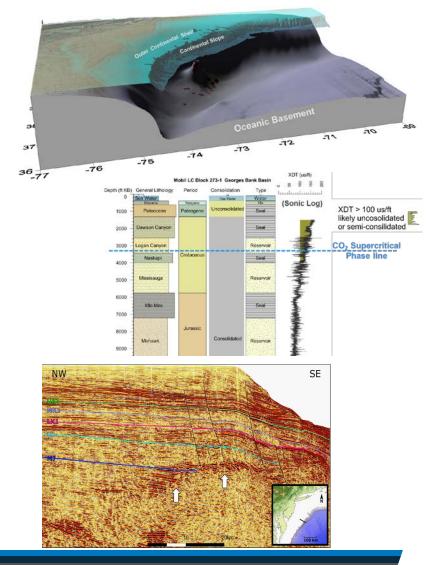
*Max. allowable bottom hole pressure: 31,000 kPa


Task 6 – Risk Factors

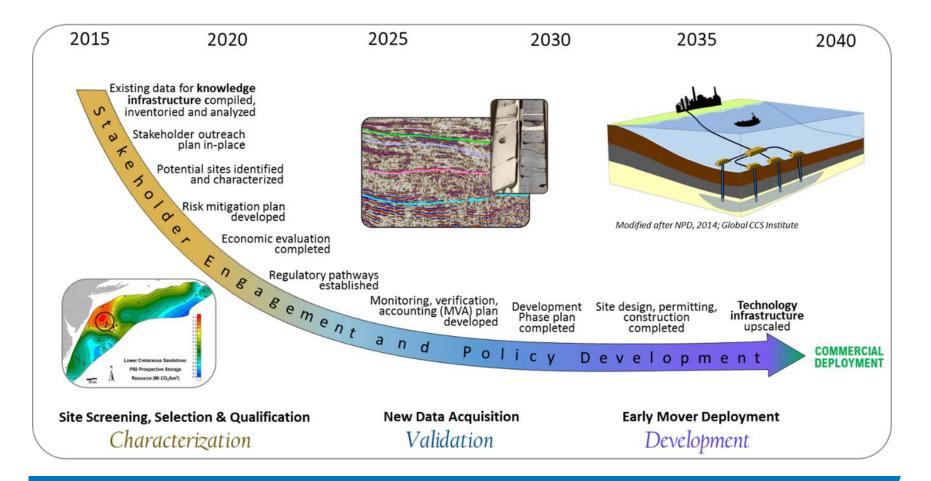
Objective: Identify technical risk factors in mid-Atlantic offshore areas that may affect CO_2 storage resource estimates:

- 1. Geological Risk Factors
- 2. Long Term Storage Risk Factors
- **3.** Environmental Factors for Deployment

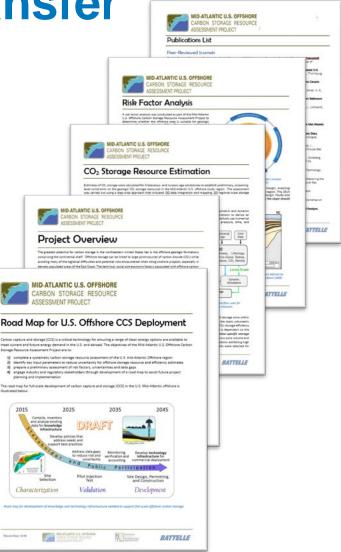
Risk factor analysis leverages project team work from other tasks (geotechnical testing, mapping, seismic analysis, database, GIS, log analysis, stakeholder review)



Task 6 – Risk Factors (cont.)


- Draft task summary report was submitted:
 - Area benefits from the large spatial extent, thick sequences of K- and J-age sands, scarcity of wellbores (44 P&A wells), and distance from populated development.
 - No highly critical risk factors identified that would impede CO₂ storage in study areas.
 - Moderate risks include faults and geomechanical stability along the mid-Atlantic <u>slope</u> and reservoir variability
 - Soft sediment deformation identified as a risk factor for semi- or unconsolidated sediments less than 1,000 m deep

Task 7 – Stakeholder Outreach


The stakeholder outreach task will engaged stakeholders about CO₂ storage resources in the offshore mid-Atlantic

Task 8 – Technology Transfer

- Technology Transfer has included:
 - 7 peer reviewed technical articles, 4 M.S. Theses, 1 PH.D., 34 presentations and posters!
 - 5 outreach pamphlets $\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow$
 - Annual review meetings (2016, 2017, 2018, 2019)
 - SECARB Annual Stakeholder Briefing
 - CSLF International Workshops on Offshore Geologic CO₂ Storage (2016, 2017, 2018)
 - Conferences and meetings: 2016 CCUS, GHGT-13, GSA (multiple), AAPG (multiple)

Accomplishments to Date

- Detailed inventory and developed comprehensive database
- Characterized key properties of reservoirs and caprocks, including: depth, thickness, porosity, permeability, sequence stratigraphy
- Completed sample analysis to address data gaps and calibration of existing data
- Completed advanced reprocessing of 4,000 line km of seismic data
- Developed composite seismic lines, zone top surface maps, and zone isopach maps
- Completed analysis of CO₂ storage risk factors in study area
- Offshore Prospective CO₂ Storage Resource complete
- Successful stakeholder outreach workshop with Harvard

Lessons learned

- World class carbon storage resource is present along Mid-Atlantic Offshore Outer Continental Shelf: 150-1136 Gt.
- Uncertainty due to offshore data gaps and data vintage can be addressed via resource classification and use of probabilistic methods to estimate storage
- Integration and correlation of various data sets (core, log, seismic, biostrat) is time-intensive but extremely valuable for constraining statistical distributions of offshore formation properties
- Risk factors include soft sediment deformation, environmental factors, stakeholder support, reservoir variability, and features along continental slope.

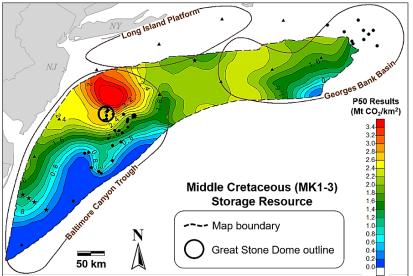
Synergy opportunities

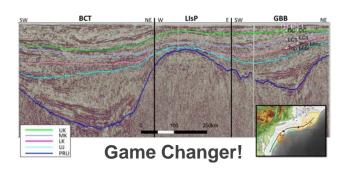
Building on preliminary offshore characterization of MRCSP Program

- Atlantic Coastal Plain CO₂ Storage Resources
- Triassic Rift Basins for Long-Term CO2 Sequestration
- **Collaborating with other DOE Offshore Projects**
 - Project technical advisors from SOSRA & Gulf Coast Projects

Adding to the international pool of offshore CCS information

- CSLF International Offshore Geologic Storage Workshops
- Offshore storage stakeholder workshops


Project summary



Key Findings:

- Deep thick saline formations and caprocks identified for potential storage & containment
- Risk factor analysis resulted in a comprehensive list of potential sources of risk and identified site screening criteria specific to the marine environment
- Risk communication is an important element for future CCS applications.

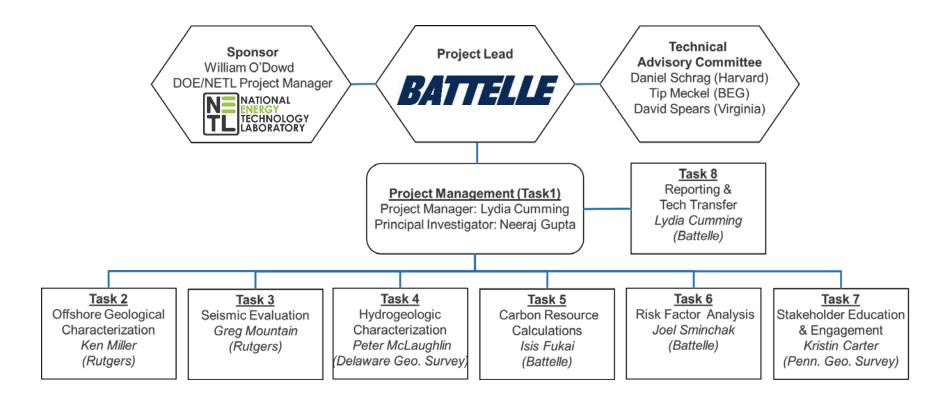
Next Steps: Complete regional Prospective Storage Resource calculations and additional stakeholder outreach

Data compiled and results generated as part of this project will help guide future site screening and selection efforts in the study area, address potential technical barriers to offshore CCS, and inform stakeholders, policy & business decisions.

Appendix Material

Benefit to the program

- The project will establish a Prospective Storage Resource Assessment in offshore regions along the mid-Atlantic and northern states in the U.S. The key outcomes include: (1) a systematic carbon storage resource assessment of the offshore mid-Atlantic coastal region, (2) development of key input parameters to reduce uncertainty for offshore storage resource calculations and efficiency estimates, (3) evaluation of risk factors that affect storage resource potential, and (4) industry and regulatory stakeholder outreach to assist future projects.
- Characterization of deep saline formation geologic and hydrologic properties, evaluation of risk factors, and estimation of Prospective Storage Resource at the P10, P50, and P90 percentiles for Mid-Atlantic offshore study area will contribute to the Carbon Storage Program's effort to support industry's ability to predict CO₂ storage capacity in geologic formations to within ±30 percent (Goal).
- The overall workflow and results established by this project along with stakeholder outreach efforts will also aid in development of Best Practice Manuals for Site Screening, Selection, and Initial Characterization; Outreach; and Risk Analysis (Goal).


Project Overview- Goals & Objectives

 Objective: Complete a systematic Carbon Storage Resource Assessment of the U.S. Mid-Atlantic offshore coastal region (Georges Bank Basin - Long Island Platform - Baltimore Canyon Trough)

DOE Carbon Storage Program Goal	U.S. Mid-Atlantic Offshore Project Objectives	Success Criteria
	Geologic characterization of potential offshore storage zones in the Mid-Atlantic study area	Constrained study to areas with realistic storage potential based on depth and thickness criteria, and presence of CO ² containment mechanisms
Support industry's ability to predict CO ₂	Use seismic data to better define continuity of offshore deep saline formations and caprocks	Evaluated and selected seismic data for additional processing
storage capacity	Catalog hydrologic properties of offshore deep saline formations and caprocks	Surveyed available geologic cores for the study area and selected samples to undergo hydraulic tests and laboratory measurements
	Integrate data to estimate Prospective Storage Resource and Storage Efficiency of candidate storage reservoirs	Determined suitable carbon storage resource calculation method and workflow for offshore study area/formations
Develop Best	Examine risk factors associated with CO2 storage in the Mid-Atlantic study area	Provide an initial assessment of offshore geological risk factors and long-term CO ₂ storage risk factors
Practice Manuals	Engage stakeholders to guide future projects	Prepare a stakeholder list and project fact sheet for education and engagement

Organization chart

Gantt chart

	BP1			BP2									
Task Name		FY	′16			FY	′17	FY18			FY19		
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1-Q3
Task 1: Project Management & Planning	•												
1.1 Update Project Mgmt. Plan	•												
1.2 Project Management													
1.3 Project Controls													
1.4 NEPA Reporting													
Task 2: Offshore Geologic Characterization													•
2.1 Data Compilation and Synthesis													
2.2 Correlation of Seismic Data with Well Logs													
2.3 Well Log Analysis													
2.4 Formation Maps and Cross-Sections							•						
Task 3: Seismic Evaluation		•											1
3.1 Seismic Processing									•				
3.2 Seismic Interpretation													
3.3 Integration of Seismic Data													
Task 4: Hydrologic Props. Characterization			•										•
4.1 Hydro Props Data Collection & Testing										•			
4.2 Calibration of Logs with Test Data.													
4.3 Num. Simulation Valid. Runs for Loc.Areas													
Task 5: Carbon Storage Resource Calcs							•						•
5.1 Local Resource Calculations													
5.2 Regional Resource Calculations												•	
Task 6: Risk Factors for MAC Areas								•			•		
6.1 Offshore Geological Risk Factors													
6.2 Long Term Storage Risk Factors											٠		
Task 7: Stakeholder Education & Engagmnt							-						
7.1 Mid-Atlantic Stakeholder Education													
7.2 Industrial Stakeholder Activities													
7.3 Technology Communication Activities		1											•
Task 8: Reporting and Tech Transfer	•-												
8.1 Progress Reporting	•	•	•	٠	•	•	٠	٠	٠	•	٠	٠	•
8.2 Technical Reports						•				•	٠	•	•

Bibliography

DATE	TITLE	JOURNAL ARTICLE	AUTHOR(S)
2017	Lower to Mid-Cretaceous sequence stratigraphy and characterization of CO_2 storage potential in the Mid-Atlantic U.S. Coastal Plain	Journal of Sedimentary Research	Miller, K. G. et al
2018	Back to Basics of Sequence Stratigraphy: Early Miocene and Mid-Cretaceous Examples from the New Jersey Paleoshelf	Journal of Sedimentary Research	Miller, K. G. et al
accepted	Onshore-offshore correlations of fluvial-deltaic sequences from the mid-Cretaceous of the southern Baltimore Canyon Trough,	AAPG Bulletin	Schmelz, W.J. et al.
2019	Mid-Cretaceous Paleopedology and Landscape Reconstruction of the mid-Atlantic U.S. Coastal Plain,	Journal of Sedimentary Research	Thornburg, J.D. et al.
submitted	Delineating Mid-Cretaceous seismic and well-log sequences to assess carbon storage potential in the northern Baltimore Canyon Trough,	Geosphere	Baldwin, K.W. et al.
in prep.	Revised age constraints for Barremian to Cenomanian sequences, offshore U.S. mid-Atlantic margin	Geosphere	Jordan, L. et al.
2019	Summary of geologic data from three core holes drilled through the Potomac Group in the Coastal Plain of Cecil County, Maryland: Report of Investigations No. 87, DNR Publication No.	Department of Natural Resources - Maryland Geological Survey, Resource	Quinn, H.A.
DATE	TITLE	THESIS	STUDENT
2019	Seismic stratigraphy of the Georges Bank Basin: Implications for seismic stratigraphy and Carbon Capture and Storage	Rutgers University, master's thesis	Adams, A.
2017	Sequence stratigraphic interpretation of mid-Cretaceous strata from the Great Stone Dome to the continental slope, northern Baltimore Canyon Trough: Implications to sea level and Carbon Capture and Sequestration	Rutgers University, Ph.D. thesis	Lombardi, C.
2019	New Insights on the Mesozoic evolution of the Mid-Atlantic Continental Margin from Integrated Sequence Stratigraphy and Numerical Modeling	Rutgers University, master's thesis	Schmelz, W.
2019	Quantitative Biostratigraphic Analysis of Middle Cretaceous Sequences in Baltimore Canyon Trough, Mid Atlantic U. S. Margin	Rutgers University, master's thesis	Jordan, L.
2019	Georges Bank Basin Stratigraphy: Cretaceous Gamma Log Sequences Correlated with Seismic Data	Rutgers University, master's thesis	Graham, S.

Bibliography

DATE	TITLE	ORG.	LOCATION	AUTHOR(S)
January, 2016	Palynological constraints on the stratigraphy of the Magothy Formation (Cretaceous), New Jersey and Delaware, and implications for interstate aquifer correlation	GSA	Denver, CO	McLaughlin, P.P. et al.
January, 2016	Sequence stratigraphic framework of the mid-Cretaceous nonmarine Potomac Formation in New Jersey and Delaware	GSA	Denver, CO	Thornburg, J.D. et al.
March, 2016	Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment	SECARB	Atlanta, GA	Cumming, L. et al
May, 2016	Overview of the Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment	CCUS	Tysons, VA	Cumming, L. et al.
September, 2016	Sequence Stratigraphy in the Northern Baltimore Canyon Trough, Offshore Eastern U. S.	GSA	Denver, CO	Lombardi, C. J. et al.
March, 2017	Cretaceous Sedimentation Patterns in the Southern Baltimore Canyon Trough: Correlating the Maryland Coastal Plain to the Continental Rise	SE GSA	Richmond, VA	Schmelz, W.J. et al.
April, 2017	Carbon sequestration potential offshore the US east coast: teaching old data new tricks	REI	New Brunswick, NJ	Fortin, W.
May, 2017	Geology (and Policy) matters: The challenging case for carbon storage, U. S. Mid- Atlantic region	REI	New Brunswick, NJ	Miller, K
June, 2017	Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment: Project Developments and Status Update	IEA-GHG	Beaumont, TX	Gupta, N., and Cumming, L.
October, 2017	Delineating Mid-Cretaceous Seismic and Well-Log Sequences to Assess Carbon Storage Potential in the Northern Baltimore Canyon Trough	GSA	Seattle, WA	Baldwin, K. E. et al.
October, 2017	Cross Sections from the Midwest Regional Carbon Sequestration Partnership: Visualizing Subsurface Carbon Storage Opportunities Across the Central and Eastern United States	GSA	Seattle, WA	Dinterman P. A., et al.
October, 2017	Sequence stratigraphic analysis of Cretaceous strata in the Southern Baltimore Canyon Trough: An integration of geological and geophysical data	GSA	Seattle, WA	Schmelz, W. et al.
October, 2017	Back to basics of sequence stratigraphy: Early Miocene and Mid-Cretaceous examples from the New Jersey paleoshelf	GSA	Seattle, WA	Miller, K. G. et al.
November, 2017	Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment	MRCSP	Washington D.C., MD	Cumming, L., Gupta,
December, 2017	Carbon Sequestration Potential in Mesozoic Rift Basins Offshore the US East Coast: Teaching Old Seismic Data New Tricks	AGU	New Orleans, LA	Fortin, W., et al.
May, 2018	Leveraging a Legacy Sample and Data Collection for Carbon Storage Resource Assessment	AAPG ACE	Salt Lake City, UT	KunleDare, M. A., McLaughlin, P. P.
May, 2018	Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment	IEA-GHG	Oslo Norway	Cumming et al.
August, 2018	Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment	DOE NETL	Pittsburgh, PA	Cumming, L.
September, 2018	Mid-Atlantic U. S. Offshore seismic analysis, rift basin map update, preliminary petrophysical profiles	LDEO	Palisades, N.Y.	Fortin, W.
September, 2018	Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment DE-FE0026087	DOE NETL	Web-based	Gupta, N.
October, 2018	CCS Potential in Basaltic Rift Basins Offshore the East Coast: New Methods on Legacy Data	GHGT-14	Melbourne, AUS	Fortin, W. F et al
November, 2018	Quantitative Biostratigraphic Analysis of Middle Cretaceous Sequences in Baltimore Canyon Trough, Offshore Mid Atlantic U.S Margin	GSA	Indianapolis, IN	Jordan, L. M. et al
December, 2018	Carbon Capture and Storage Potential Offshore the US East Coast: New Methods and Insights from Legacy Data	GHGT-14	Melbourne, AU	Fortin, W.
December, 2018	Crustal structure and rift architecture of the Georges Bank, U. S. Atlantic margin	AGU	Washington, D.C.	ten Brink, et al

Bibliography

POSTER	TITLE	ORG.	LOCATION	AUTHOR(S)
May, 2016	Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment	CSLF	Austin, TX	Gupta, Fukai, Cumming
September, 2016	Carbon Storage Potential at the Great Stone Dome, Northern Baltimore Canyon Trough	GSA	Denver, CO	Lombardi, C. et al
September, 2016	Potential for Carbon Capture and Sequestration (CCS) in the Eastern Georges Bank Basin, Offshore Massachusetts	GSA	Denver, CO	Graham, et al
November, 2016	Mid-Atlantic U.S. Offshore Carbon Storage Resource Assessment	GHGT-13	Lausanne, SW	Cumming et al
October, 2017	Using seismic stratigraphic principles to map carbon sequestration potential in the northern Baltimore Canyon Trough	GSA	Seattle, WA	Baldwin, K. E., et al
October, 2017	Cross Sections from the Midwest Regional Carbon Sequestration Partnership: Visualizing Subsurface Carbon Storage Opportunities Across the Central and Eastern United States	GSA	Seattle, WA	Dinterman, P. A., et al
October, 2017	Sequence stratigraphic analysis of Cretaceous strata in the Southern Baltimore Canyon Trough: An integration of geological and geophysical data	GSA	Seattle, WA	Schmelz, W., et al
May, 2018	Revised Stratigraphic Synthesis of the Baltimore Canyon Trough: Implications for Reservoir Identification and Analysis	AAPG ACE	Salt Kale City, UT	Schmelz, W., et al
October, 2018	Performing Carbon Storage Resource Assessments for Offshore Mid-Atlantic United States	GHGT-14	Melbourne, AU	Cumming, L. et al
December, 2018	Potential for CO ₂ sequestration in Rift Basins Offshore the US East Coast: Updated basin extent and composition from pre-stack seismic inversion	AGU	Washington, D.C.	Fortin, W. et al

