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Presentation Outline

• Overview of project
• Past accomplishments (Task 1)
• Current technical status (Task 1)
• Lessons learned
• Synergistic opportunities
• Project summary
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Overview of Project

• Task 2 (Thur. 4.30pm, Graham ORNL): Investigate perfluorocarbon tracers (PFT), 
isotopes, other novel geochemical signals to interrogate subsurface (at Cranfield).

• Task 1: Incorporate data into   
numerical models to 
– Better interpret field data, e.g., 3D CO2

plume development,
– Predict long-term evolution of fluids and 

formation,
– Apply lessons learned from prior pilot 

tests to other/future projects.
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Objective
• Constrain structural, solubility, and chemical trapping mechanisms that 

guarantee storage permanence, through novel subsurface signals & modeling.
– Non-trivial migration patterns in heterogeneous formations 
– Diffusion driven convection and cross-flow into low-perm. facies
– Chemically driven mineralization of CO2 and formation alterations

• Iteratively coupled workflow                                                                                                 
of field data and modeling
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Modeling Tools
• Unique combination of capabilities in Osures:

– Higher-order FE methods for flow and transport: allow unstructured grids, 
tensor permeability, discrete fractures, strong heterogeneity

– Low numerical dispersion (e.g., resolves small-scale onset of instabilities)

– Cubic-plus-association (CPA) equation of state (non-ideal) phase 
behavior modeling of water, CO2, hydrocarbons, tracers                
(capture, e.g., competitive dissolution and brine compressibility)

– Fickian diffusion with self-consistent composition + T + p -dependent full 
matrix of diffusion coefficients for multicomponent multiphase fluids

– Capillary-driven flow with composition + p -dependent surface tension

– New Reactive transport by coupling to iPHREEQC geochemistry
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Prior Accomplishments
Pressure response in injection well

(Soltanian et al., IJGGC 2016)
CO2 migration in 2009 (left) & 2010 (right)

CO2 and PFC tracer migration (Soltanian et al., GGST 2018)
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Prior Accomplishments
Exsolution and migration of pre-existing dissolved methane (Soltanian et al., Groundwater 2018)
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Prior Accomplishments
Universal scaling behavior of gravito-convective mixing of dissolved CO2

1. Soltanian et al., Sci Rep. 2016
2. Amooie et al., GRL 2017
3. Soltanian et al., ES&T 2017
4. Amooie et al., GGGG 2017
5. Dai et al., Applied Energy 2018
6. Amooie et al., Phys Rev E, 2018
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Technical Status

• 2019: Coupled Osures, higher-order FE simulator for 3D 
multiphase multicomponent compositional (EOS-based) 
convection, diffusion, capillarity, gravity, dispersion, fractures to 
iPHREEQC for geochemistry.

• PHREEQC is open source, well validated, offers interface to 
other flow simulators (only 1D transport itself).

• Currently, full Osures capabilities, but 1-phase chemistry. 
Multiphase in FY2020.
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Benchmarking
1. Electrochemical migration (Nernst-

Planck diffusion1) of Na+, Cl-, H+, NO3
-. 

Modeled with CrunchFlow, MIN3P, 
PHREEQC (symbols), Osures (solid).

1Rasouli, Steefel, Mayer, Rolle; Benchmarks for multicomponent diffusion and electrochemical migration. Comput Geosci (2015)

2. Tracer isotope (22Na+ vs Na+) diffusion 
due to charge effects1 

PHREEQC (symbols), Osures (solid) 
steady-state 22Na+ concentration
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Benchmarking
3. Rock-fluid cation exchange column (Ex. 11 PHREEQC manual)

Advection & dispersion (left), or only advection (right)
Ca-Cl injected into Na-K-NO3 solution. Ca2+ exchanges with Na+ and K+

PHREEQC (symbols), Osures (solid line)
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Higher-Order Methods
• Mixed (Hybrid) FE method for pressure & velocity field
• Multilinear Discontinuous Galerkin FE for reactive transport 
• Accurate velocities and low numerical dispersion
• Unstructured, relatively coarse, 3D grids

1st order 2nd order

Potassium breakthrough curves
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Unstructured Grids
• 2D: Quads & Triangles
• 3D: Tetra- & Hexahedra
• Allows gridding of, e.g., cores and complex 

geological formations.
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Discrete Fractures
FE discrete fracture example with 
convection, dispersion, and rock-
fluid cation exchange reactions.

Chloride (injected) Potassium (exchange reaction)

Unstructured grid, two intersecting fractures     
(1 mm aperture, 108 mD), log-normal random 
perms. 75 < k < 150 md.
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Lessons Learned
• Critical uncertainties in modeling/predicting two-phase migration of 

supercritical CO2 into brine-saturated formation:
– Subsurface heterogeneity,
– Relative permeability & capillary pressure relations: especially facies-dependence.

• Convective mixing of dissolved CO2 relatively insensitive to multimodal 
facies heterogeneity when porosity and permeability are correlated. 
Simple scaling laws in terms of formation/fluid properties apply broadly.

• Rock-fluid reactions likely modest on short time-scales, but may affect 
long-term storage. Predictions require costly (parallelized) numerical 
modeling & further research.
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Synergy
• Pursuing collaborative opportunities to model CCS projects other than Cranfield.
• In preliminary discussions with MRCSP regarding challenging reef systems.
• Open to other partnerships, incl. future large-scale projects.
• Addressing priority research directions:

– PRD S-1: Advancing Multiphysics and Multiscale Fluid Flow to Achieve Gton/yr Capacity
– PRD S-2: Understanding Dynamic Pressure Limits for Gigatonne-scale CO2 Injection
– PRD S-6: Improving Characterization of Fault and Fracture Systems
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Project Summary (Task 1)
• Completed: 

– Modeling of CO2, brine, and various tracers at Cranfield.
– Fundamental analyses of solubility trapping (mixing and spreading of 

dissolved CO2).
– Initial implementation and benchmarking of coupled flow and reactive 

transport with Osures+iPhreeqc.

• Ongoing & Future work: 
– Investigation of multiphase flow and reactive transport at Cranfield
– Technology improvements (specifically parallelization / HCP)
– Modeling of independent field site(s) to stress-test final developed 

modeling tools.
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Benefit to Program

• Provide information on 
physical and geo-
chemical changes in 
reservoir, ensuring CO2
storage permanence.

Geologic Storage, Simulations, and Risk Assessment

• Facilitate fundamental 
understanding of processes 
impacting behavior of fluids
—diffusion, dispersion, mixing, 
advection, capillarity, and reaction—
to improve storage efficiency.

• Ground-truth behavior of fluids, CO2
transport properties that can be used 
to constrain reservoir simulation 
models, predicting CO2 storage 
capacity & designing efficient MVA 
programs.
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Project Overview

1. Initial incorporation of geochemistry and reactive transport into Osures
2. Report on universal fluid dynamics of gravito-convective mixing
3. Initial transport modeling of aqueous equilibrium reactions
4. Data sharing planned with partner institution(s)
5. Static model developed for a independent CSS project
6. First reactive transport modeling of multiphase brine-CO2-rock system
7. Modeling of CO2-brine flow and transport for a field site different from Cranfield DAS
8. Final model of geochemistry and reactive transport at Cranfield
9. Complete CO2-brine-rock geochemistry and reactive transport incorporated into CSS simulations
10.Final report on Monitoring of Geological CO2 Sequestration Using Isotopes and Perfluorocarbon Tracers

Milestones (2018-2021)

Key Accomplishments & Deliverables Value Delivered

2017 – 2018: 
• Detailed model of PFT & SF6 tracer transport at Cranfield site.
• Simulated CH4 and CO2 transport at Cranfield DAS site.
• Prioritized reactive transport processes for simulation.
• Developed modeling roadmap “Towards Continuum Reactive 

Transport Modeling Coupled with Multiphase Compositional Flow in 
Porous Media.”

Most reliable predictive multi-physics modeling tools for geological CO2
storage to date, as validated by field data from the Cranfield project, 
• Matching traditional measurements (pressure response, CO2

breakthrough),
• Matching novel PFC tracer data with parts-per-million precision.
Tracer data + modeling elucidate CO2 plume migration (containment) at 
later times.
Universal predictions of dissolution trapping rates & times-scales.

Impact
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Gantt Chart
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Benchmarking
1. Electrochemical migration (Nernst-

Planck diffusion1) of Na+, Cl-, H+, NO3
-. 

Modeled with CrunchFlow, MIN3P, 
PHREEQC (symbols), Osures (solid).

1Rasouli, Steefel, Mayer, Rolle; Benchmarks for multicomponent diffusion and electrochemical 
migration. Comput Geosci 19(3), 523–533 (2015)

2. Tracer isotope (22Na+ vs Na+) diffusion 
due to charge effects1 PHREEQC 
(symbols), Osures (solid) steady-state 
22Na+ concentration

3. Rock-fluid cation 
exchange column (Ex. 
11 PHREEQC manual), 
convection & diffusion.
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