National Risk Assessment Partnership - Strategic Monitoring for Uncertainty Reduction

Erika Gasperikova¹, Michael Commer¹, Quanlin Zhou¹, Thomas Daley¹, Delphine Appriou², Alain Bonneville², Xianjin Yang³, Thomas Buscheck³, Kayyum Mansoor³, Susan Carroll³, Kai Gao⁴, Lianjie Huang⁴, Yu Chen⁴, Ting Chen⁴, Zheng Zhou⁴, Youzuo Lin⁴, Zhongping Zhang⁴, Yue Wu⁴, George Guthrie⁴, Zan Wang⁵, Robert Dilmore⁵, Grant Bromhal⁵, William Harbert⁵, Catherine Yonkofski², Jonathan Whiting², Diana Bacon², Jeffrey Burghardt²

¹LBNL, ²PNNL, ³LLNL, ⁴LANL, ⁵NETL

U.S. Department of Energy

National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 26-30, 2019

Presentation Outline

- Secondary CO₂ plume detection (Kimberlina 2: Leakage through a dipping fault)
 - Surface seismic, Electromagnetic, and Gravity methods
- Monitoring methods for detection of brine and CO₂ leakage (Kimberlina 1.2: Leakage through legacy wells)
 - Surface seismic, Magnetotellurics, Electrical resistivity tomography, Gravity, Downhole pressure, Chemical sampling
- Machine learning approaches for leakage detection
- Tools for optimal monitoring design
 - Microseismic Monitoring Network, DREAM
- Summary

Surface seismic and EM methods for CO_2 plumes detection (1)

Gasperikova, E., Commer, M., Zhou, Q., Gao, K., Huang, L., Daley, T.

Surface seismic and EM methods for CO₂ plumes detection (2) Gasperikova, E., Commer, M., Zhou, Q., Gao, K., Huang, L., Daley, T.

Borehole-to-surface EM

Three CO₂ plumes

Gravity monitoring (1)

D. Appriou, A. Bonneville, Q. Zhou, E. Gasperikova

CO₂ saturation and density contrast

<u>Surface monitoring:</u> detection strongly depends on 1) detection threshold, 2) size of the leak and 3) depth of the leak

Borehole monitoring: time-lapse responses discriminate depth of leaks, but signal quickly decreases with the distance from a leak

Surface gravity responses

Gravity monitoring (2)

D. Appriou, A. Bonneville, Q. Zhou, E. Gasperikova

Gravity Inversion

- Best results obtained by joint inversion of borehole and surface data with an a-priori background model
- The mass estimate is within 10 % to 20% of the actual mass of fluid displaced

Analytical Solution

- First order agreement between multi-phase flow simulations and analytical solution
- Analytical solution can be used to estimate the gravity response expected at a CCS site

Monitoring Methods for Detection of Brine and CO₂ Leakage (1) Yang, X., Buscheck, T., Mansoor, K., Wang, Z., Gao, K., Huang, L., Appriou, D., Carroll, S.

CO₂ saturation

TDS concentration

Overpressure

Monitoring Methods for Detection of Brine and CO_2 Leakage (2) Yang, X., Buscheck, T., Mansoor, K., Wang, Z., Gao, K., Huang, L., Appriou, D., Carroll, S.

Seismic amplitude change

Receiver Inline Position (km

103 104 105 CO₂ Leakage Mass (tonnes)

106

> 1200

Gravity .

102

Monitoring Methods for Detection of Brine and CO₂ Leakage (3) Yang, X., Buscheck, T., Mansoor, K., Wang, Z., Gao, K., Huang, L., Appriou, D., Carroll, S.

TDS monitoring is the only method that detects a small leak of less than 10,000 tonnes of CO_2 leakage Effectiveness of downhole monitoring depends on the number and location of the monitoring wells and monitoring sensors

Monitoring Methods for Detection of Brine and CO₂ Leakage (4) Yang, X., Buscheck, T., Mansoor, K., Wang, Z., Gao, K., Huang, L., Appriou, D., Carroll, S.

A leak is defined as a plume that has

- Leakage mass > 20,000 tonnes
- TDS > 100 mg/l
- CO₂ saturation > 1%

Geophysical monitoring methods complement downhole monitoring and improve the likelihood of leak detection

A New ML Detection Method: Non-Imaging Leakage Detection Z. Zhou, Y. Lin, Z. Zhang, Y. Wu, Z. Wang,

R. Dilmore, G. Guthrie

Conventional Detection – Seismic Imaging

Inferring CO₂ saturation from surface seismic and downhole pressure and TDS data using ML

Wang, Z., Dilmore, R., Bromhal, G., Harbert, W.

Tool for Optimal Design of Microseismic Monitoring Network (1)

Chen, Y., Chen, T., Gao, K., Huang, L.

- calculate P- and S-wave arrival times.
- Developed a simulated heat-annealing method to search the best hypocenters through minimizing the arrival-time misfit between data and synthetics.

relationship curves for optimal design

Tool for Optimal Design of Microseismic Monitoring Network (2) Chen, Y., Chen, T., Gao, K., Huang, L.

GUI Design

 Input velocity models, geophone distribution and target monitoring region in GUI.

					0
e					
elocity Model Geo	phone Dist Area Monit	coring Region Advanced			
Select Model:	1D - Value	-			
Number of Layers:		10			
Layer 0 Thickness	1	Layer 0 P-Velocity	0.661	Layer 0 S-Velocity	0.992
Layer 1 Thickness	1	Layer 1 P-Velocity	0.468	Layer 1 S-Velocity	0.648
Layer 2 Thickness	1	Layer 2 P-Velocity	0.32	Layer 2 S-Velocity	0.43
Layer 3 Thickness	1	Layer 3 P-Velocity	0.08	Layer 3 5-Velocity	0.489
Layer 4 Thickness	1	Layer 4 P-Velocity	0.327	Layer 4 S-Velocity	0.33
ayer 5 Thickness	1	Layer 5 P-Velocity	0.675	Layer 5 S-Velocity	0.816
ayer 6 Thickness	1	Layer 6 P-Velocity	0.261	Layer 6 S-Velocity	0.269
Layer 7 Thickness	1	Layer 7 P-Velocity	0.348	Layer 7 S-Velocity	0.547
ayer 8 Thickness	1	Layer 8 P-Velocity	0.668	Layer 8 S-Velocity	0.175
Layer 9 Thickness	x -	Layer 9 P-Velocity	0.885	Layer 9 S-Velocity	0.401

Application

- Designed microseismic monitoring network for the Phase 4 of SWP at the Farnsworth CO2-EOR field.
- The turning point (blue circle) in the standard deviation error of microseismic event location vs the number of surface seismic stations indicates that 16 surface stations are needed for the optimal design.

Risk-Based Monitoring Network Design Tools -DREAM

Yonkofski, C., Whiting, J., Bacon, D., Appriou, D., Burghart, J.

 Completed development of the DREAM tool interface to accommodate NRAP-Open-IAM input

DREAM/ NRAP-Open-IAM Input

NRAP-Open-IAM application to FutureGen 2.0

DREAM/Gravity testing

Density grid with a cubic domain representing a 0.2 g/cm² contrast

- Began DREAM/gravity integration
 - Completed validation of standalone gravity semianalytical solutions.
- Continued evaluation of the ERT module
 - Modifications consider more sensitive array configurations

Next Steps

- Integration of gravity module into DREAM
- Continued evaluation of ERT module in DREAM
- Compare effectiveness of monitoring technologies for leak detection at CO₂ storage sites
- Develop characterization of technical performance of monitoring technology detection thresholds, and attributes of spatial and temporal resolution
- Report and peer reviewed article on comparing effectiveness of monitoring technologies for leak detection at CO₂ storage sites

Accomplishments

- Release of DREAM tool with NRAP-Open-IAM input
- Tool for Optimal Design of Microseismic Monitoring Network
- Peer reviewed journal articles and presentations at scientific conferences

Synergy Opportunities

- Noise levels from actual field data could be incorporated into modeling and improve statistical estimates of derived parameters
- Field data sets from active experiments could be used to test and verify monitoring approaches
- Developed codes and methodologies will be shared with other projects

Appendix

Benefit to the Program

- To develop a science-based method for quantifying the risks (and associated potential liabilities) for CO₂ storage sites and to develop efficient, risk-based monitoring protocols. The work is based on detailed multi-physics process models, coupled with reduced order modeling to facilitate stochastic analysis of risk and uncertainty.
- The development of monitoring approaches and risk assessment methodologies will lead to more efficient use of monitoring resources with risk reduction as an optimization metric.

Project Overview

Goals and Objectives

- Assess the effectiveness of monitoring methods to detect leakage, develop optimized cost-effective monitoring designs, and integrate monitoring into the NRAP-Open-IAM to reduce risk and uncertainty in risk.
- The integration will include feedbacks that allow a monitoring protocol to be influenced or driven by the NRAP-Open-IAM assessment of risks, as well as allowing the risk profiles to be modified by monitoring and mitigation. The influence of monitoring will be in identifying the need for mitigation (i.e., identification of leakage) and then the monitoring of mitigation to assess its success.

Milestones and Deliverables

- D.4.B Decision Point: Propose a conceptual design for effectively integrating geophysical models/monitoring technology characterizations into a risk assessment framework. June 2019
- Presentation on NRAP Task 4.0 accomplishments at the Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting. August 2019
- M4.B Complete draft manuscript comparing effectiveness of monitoring technologies for leak detection. September 2019
- Briefing to NRAP Stakeholder Group on progress and status of strategic monitoring task. Fall 2019
- Report comparing effectiveness of monitoring technologies for leak detection at CO₂ storage sites. December 2019

Bibliography (1)

- Appriou D., A. Bonneville, E. Gasperikova, and Q. Zhou, 2018, Assessment of Time-Lapse Gravity Monitoring for Detecting Leakage from a Faulted CO₂ Subsurface Storage Complex, AGU, Washington D.C.
- Bacon, D.H., Yonkofski, C.M., Brown, C.F., Demirkanli, D.I. and Whiting, J.M., 2019. Risk-based post injection site care and monitoring for commercial-scale carbon storage: Reevaluation of the FutureGen 2.0 site using NRAP-Open-IAM and DREAM. International Journal of Greenhouse Gas Control, 90, 102784.
- Buscheck, T.A., K. Mansoor, X. Yang, H. M. Wainwright, and S. A. Carroll, 2019, Downhole Pressure and Chemical Monitoring for CO₂ and Brine Leak Detection in Aquifers Above a CO₂ Storage Reservoir, Int. J. of Greenhouse Gas Control, accepted.
- Daley, T.M., 2019, Rock Physics of CO₂ Storage Monitoring in Porous Media, in Geophysics and Geosequestration, Cambridge University Press. ISBN: 9781107137493
- Daley, T. M., and Harbert, W., 2019, Goals of CO₂ monitoring: Why and how to access the subsurface changes associated with CCS, in Geophysics and Geosequestration, Cambridge University Press. ISBN: 9781107137493
- Delaney, D., Purcell, C., Mur, A., Haljasmaa, I., Soong, Y., Crandall, D., and Harbert, W, 2019, Dynamic Moduli and Attenuation: Rhyolite and Carbonate Examples, AGU Book, in press.

Bibliography (2)

- Gasperikova, E., and M. Commer, 2019, Electrical and Electromagnetic Methods. In: Geophysics and Geosequestration, Editors: Davis, T. and Landro, M., Cambridge University Press, ISBN: 9781107137493.
- Gasperikova, E., and H.F. Morrison, 2019, Fundamentals of Electrical and Electromagnetic Techniques for CO2 Monitoring. In: Geophysical Monitoring for Geologic Carbon Storage and Utilization, Editor: Huang, L., AGU and Wiley book, in press.
- Huerta N., C. Brown, S. Carroll, R. Dilmore, E. Gasperikova, E. Keating, C. Oldenburg, R. Pawar, G. Bromhal, 2018, Using simulation case studies to assess how the level of risk informs monitoring requirements, GHGT-14, Melbourne, Australia,
- Shi, Z., Sun, L., Haljasmaa, I., Harbert, W., Sanguinito, S., Tkach, M., Goodman, A., Tsotsis, T. T., and Jessen, K., 2019, Impact of Brine/CO₂ Exposure on the Transport and Mechanical Properties of the Mt. Simon Sandstone, Journal of Petroleum Science and Engineering, 117, p. 295-305.
- Wang Z., Harbert W.P., Dilmore R.M., Huang L., 2018, Modeling of time-lapse seismic monitoring using CO2 leakage simulations for a model CO₂ storage site with realistic geology: Application in assessment of early leak-detection capabilities. International Journal of Greenhouse Gas Control, 76, 39-52.
- Wang Z., Dilmore R.M., Harbert W.P., 2019, Inferring CO₂ saturation from synthetic surface seismic and downhole monitoring data using machine learning for leakage detection at CO₂ sequestration sites. International Journal of Greenhouse Gas Control, in review.

Bibliography (3)

- Zhou, Z., Y. Lin, Z. Zhang, Y. Wu, Z. Wang, R. Dilmore, and G. Guthrie, 2019. A Data-Driven CO2 Leakage Detection Using Seismic Data and Spatial-Temporal Densely Connected Convolutional Neural Networks. International Journal of Greenhouse Gas Control, accepted.
- Zhou, Z., Y. Lin, Y. Wu., Z. Wang, R. Dilmore, and G. Guthrie, 2018, Spatial-Temporal Densely Connected Convolutional Networks: An Application to CO2 Leakage Detection. SEG Technical Program Expanded Abstracts: 2136-2140.
- Yang, X., T. A. Buscheck, K. Mansoor, Z. Wang, K. Gao, L. Huang, D. Appriou, and S. A. Carroll, 2018, Assessment of Multiple Monitoring Methods for Detection of Brine and CO₂ Leakage, presented at GHGT-14, 10/22 10/25, Melbourne, Australia.
- Yang, X., T. A. Buscheck, K. Mansoor, Z. Wang, K. Gao, L. Huang, D. Appriou, and S. A. Carroll, 2019, Assessment of Geophysical Monitoring Methods for Detection of Brine and CO₂ Leakage in Drinking Water Aquifers, Int. J. of Greenhouse Gas Control, 90, 102803, ISSN 1750-5836, https://doi.org/10.1016/j.ijggc.2019.102803.
- Yonkofski C., G.D. Tartakovsky, N.J. Huerta, A.M. Wentworth, and J.R. Sminchak, 2018, Risk Based Monitoring Designs for CO2 Leakage through Abandoned Wellbores: An application of NRAP's WLAT and DREAM tools. International Journal of Greenhouse Gas Control, accepted.