Well Integrity - Response from Storage and EOR Operators

FEW0191 – Task 7

Susan Carroll, Megan Smith – LLNL Greg Lackey, Bob Dilmore – NETL Laura Edvardsen, Pierre Cerasi -- SINTEF

U.S. Department of Energy National Energy Technology Laboratory Addressing the Nation's Energy Needs Through Technology Innovation – 2019 Carbon Capture, Utilization, Storage, and Oil and Gas Technologies Integrated Review Meeting August 26-30, 2019

Motivation

To define well integrity research needs based on input from CO₂ storage projects

Depleted oil and gas reservoir. Weyburn, Canada www.thestarphoenix.com

Projects span small demonstrations to commercial operations across the globe

Carbon Storage Atlas, 5th addition, 2015 3

Projects span small demonstrations to commercial operations across the globe

Accomplishments

- Survey has been vetted by Industry and DOE
- Sent to the operators of 52 sites
- Responses are anonymous
- -16 responses 23Aug2019

Preliminary Survey Results

- Most projects are on shore
 - Saline reservoirs and CO₂-EOR operations
 - More than 1000 meters deep
 - Less than 70°C
 - At or below hydrostatic pressure
- CO₂ injection
 - 1 to more than 9 years
 - Less than 10,000 to more than 1,000,000 tonnes
 - 10,000 to 1,000,000 tonnes/year
- Most wells are vertical
- Number of wells
 - 1 to more than 100 injection wells
 - 1 to 100 legacy wells

Survey suggests that most integrity issues are manageable

- -We will highlight issues that could benefit from additional information
 - Construction
 - Operations
 - Material Degradation
 - Risk factors leading to leakage
 - Leakage Monitoring

Construction - Impacts

Construction

- Research Recommendations
 - Better characterization of stress state and geology near the well bore
 - Well designs that accommodate the state of stress and local geology

Operations - Impacts

Operations

Research Recommendations

- Robust instrumentation
- Improved understanding between injection, pressure, and materials and caprock performance
- Improved understanding between fluid chemistry, temperature and pressure on hydrate/organic solids formation

Impacts: Acute degradation of wellbore materials

Impacts: Chronic degradation of wellbore materials

Degradation of Well Materials

Research Recommendations
– Corrosion of steel components

Risk Factors for Well Leakage

Risk Factors

Research Recommendations

- Standards for cemented interval needed to avoid leakage
- Standards to evaluate the health of preexisting wells

Cost effective and useful monitoring methods

Mechanical integrity pressure tests						
Wellbead pressure						
Weillead pressure						
weilhead temperature						
Wellhead flowrate sensors						
Cement bond log						
Groundwater chemistry						
Packer isolation test						
Downhole temperature sensors						
Downhole pressure sensors						
Supervisory control and data acquisition						
Multi-finger caliper						
Groundwater pressure						
Pulsed neutron log						
Ultrasonic imaging tool						
Soil gas flux sampling						
Active seismic					Cost effe	ctive
Cross well electrical resistance tomography						
Electrical resistance tomography			useful			
Magnetotellurics						
Sidewall coring tool					critical	
	0	5	10	15	20	25

Monitoring

- Research Recommendations
 - Improved methods to evaluate pre-existing wells
 - Improved methods to detect leakage

Project Summary

- Well integrity survey will result in a unique data set to guide future research investments on well integrity.

Next Steps

- Collect and evaluate additional responses to the survey

• Contact Jaisree Iyer for survey

-iyer5@llnl.gov

- Vet research recommendations with literature and experts
- Publish findings as research needs document

Appendix

Overview, Synergies, and Program Benefits

- Problem Statement
 - Our objective is to develop a Well Integrity Research Needs document that reports issues and insights from carbon storage projects. The report will provide a field-based assessment to better understand past incidents, to prevent them from happening in the future, to define for future research needs for successful commercialization of geologic CO₂ storage.
 - Target CO₂ storage projects include DOE US Partnerships and international commercial projects.
- Research Partners: LLNL, NETL and SINTEF
- Research needs will be based on survey response from industry and literature.
- This work contributes to several Priority Research Directions for storage recommended in the Mission Innovation CCUS Workshop report.
 - Optimizing injection of CO_2 by control of the near-well environment
 - Locating, evaluating, and remediating existing and abandoned wells
 - Establishing, demonstrating and forecasting well integrity

Task Subtitle Task 7: Well Integrity Atlas

