Fossil Energy Fuel Cell Program # Solid State Energy Conversion Alliance Wayne Surdoval, SECA Coordinator July 8, 2003 National Energy Technology Laboratory Office of Fossil Energy #### **Presidential Priorities** #### National Energy Policy - Increasing America's domestic energy supplies - Protecting America's environment - Ensuring a comprehensive delivery system - Enhancing National energy security #### *Initiatives* - Hydrogen Fuel Cell - Clean Coal Power - Clear Skies - Climate Change - Energy Security #### **SECA Fits Presidential Initiatives** # SECA is an Interim Solution from Conventional Fuels to Hydrogen Economy # **Fuel Cell Program Areas (FY03 Funding)** **SECA - \$34.5M** Vision 21 Hybrids - \$13.0M **Molten Carbonate - \$10.0M** Advanced Research (Electrochemical Engineering) \$4.0M # **Solid Oxide Fuel Cell** ### **Tubular SOFC** #### The Vision: Fuel Cells in 2010 Low Cost/High Volume \$400/kW > 50,000 units/yr # SECA: A Path to Making Fuels Cells a Reality #### 2005 1st Generation products - Truck APU's - RV's - Military #### **2010** - \$400/kW - Commercial products - Residential, commercial, industrial CHP - -Transportation APUs #### 2015 - \$400/kW - Hybrid systems - -60-70% efficient - Coal power plants - FutureGen # **Program Structure** **Industry Input** **Program Management** Needs **Project Management** Cntrols & Diagnostics **Industry Integration Teams** Technology Transfer **Core Technology Program** # **SECA Minimum Technical Requirements** | Cost | \$400/ kW | |-----------------------------------|--| | Power Rating Net | 3-10 kW | | Efficiency
(AC or DC/LHV) | 30 - 50% [APU]
40 - 60% [Stationary] | | Fuels
(Current infrastructure) | Natural Gas
Gasoline
Diesel | | Design Lifetime | 5,000 Hours 1,000 Cycles [APU]
40,000 Hours 100 Cycles [Stationary] | | Maintenance Interval | > 1,000 Hours | # **Six SECA Industry Teams** # **Different Approaches!** | Team | Design | Manufacturing | |--------------------------------|--|--| | Cummins-
SOFCo | Electrolyte supported 850 C Thermally matched materials Seal-less stack | Tape castingScreen printingCo-sintering | | Delphi-
Battelle | Anode supported 750 C Ultra compact Rapid transient capability | Tape castingScreen printing2-stage sintering | | General
Electric
Company | Anode supported 750 C Hybrid compatible Internal reforming | Tape calendering 2-stage sintering | | Siemens
Westinghouse | Cathode supported 800 C Redesigned tubular Seal-less stack | Stack extrusionPlasma spray | # **Two New Different Approaches!** | Team | Design | Manufacturing | |----------------------------|--|---| | Acumentrics
Corporation | Anode supported microtube 750 C Thermally matched materials Robust & rapid start-up | ExtrusionDip processingSpray deposition | | FuelCell
Energy, Inc. | Anode supported < 700 C Low cost metals | Tape casting Screen printing Co-sintering Electrostatic deposition | # **Current Priorities:** Core Technology Program | 1 | Gas seals | Glass and compressive seals | |---|---------------------------|---| | 1 | Interconnect | Modifying components in alloysCoatings | | 2 | Modeling | Models with electrochemistryStructural characterization | | 2 | Cathode performance | Micro structure optimizationMixed conductionInterface modification | | 2 | Anode/
fuel processing | Metal oxides with interface modification Catalyst surface modification Characterize thermodynamics/kinetics | | 3 | Power electronics | Direct DC to AC conversion DC to DC design for fuel cells | | 4 | Material cost | Lower cost precursor processingCost model methodology | # **Core Technology Program FY 2003** # **SECA Budget (\$M)** # SECA: Key Part of Larger Fossil Energy Program # Other Pathways to High Volume With Help from our Friends wayne.surdoval@netl.doe.gov mark.williams@netl.doe.gov