The Solid State Energy Conversion Alliance: A Paradigm Shift in Technology Development

Core Technology Program Workshop

February 14 & 15, 2001

Wayne A. Surdoval National Energy Technology Laboratory

The Vision: Fuel Cells in 2010

Low Cost/High Volume < \$400/kW/ > 50,000 units/yr

Multiple Fuels

Reduced CO₂ Emissions and negligible pollutants using fossil fuels

Double the efficiency of producing power from fossil fuels.

2K- 5/00

A Core Module for Multiple Applications

SECA Development: Progressive Applications

- \$400/kW
- Commercial

<\$200?/kW propulsion

SECA Industry Integration Teams The Manufacturing Base

Multiple Integration Teams

Mass Customization \rightarrow of Common Modules

Industry Integration Teams

- Three to six DOE/DOD Teams
- β Prototype within four years of Award.
- 20% Cost Share in Phase I; 50% in Phase II and III.

Minimum Requirements

	PHASE I	PHASE II	PHASE III
Power Rating (Net)	3kW – 10kW	3kW – 10kW	3kW – 10kW
Cost	\$800/kW	\$600/kW	\$400/kW
Efficiency (AC or DC/LHV)	Mobile 25 -45%	Mobile 30 - 50%	Mobile 30 - 50%
	Stationary 35 -55%	Stationary 40 - 60%	Stationary 40 -60%
Steady State Test @ Normal Operating Conditions	1500 hours	1500 hours	1500 hours
	80% availability	85% availability	95% availability
	 △ Power ≤2% degradation/500 hours at a constant stack voltage with R≥0.95. 	 △ Power <1% degradation/500 hours at a constant stack voltage with R≥0.95. 	 △ Power ≤0.1% degradation/500 hours at a constant stack voltage with R≥0.95.
	R-Linear Correlation Coefficient	R-Linear Correlation Coefficient	R-Linear Correlation Coefficient

Minimum Requirements (cont.)

	PHASE I	PHASE II	PHASE III
Transient Test	10 cycles	50 cycles	100 cycles
	 △ Power ≤ 1% degradation after 10 cycles at a constant stack voltage. 	 △ Power 4 Power 4 1% 4 degradation after 50 5 cycles at a constant 5 stack voltage. 	 △ Power ≤ 1% degradation after 100 cycles at a constant stack voltage.
Test Sequence	 Steady State Test–1000 hours Transient Test Steady State Test–500 hours 	 Steady State Test-1000 hours Transient Test Steady State test-500 hours 	 Steady State Test –1000 hours Transient Test Steady State Test–500 hours
Maintenance Intervals	Design aspects should not require maintenance at intervals more frequent than 1000 operating hours.	Design aspects should not require maintenance at intervals more frequent than 1000 operating hours.	Design aspects should not require maintenance at intervals more frequent than 1000 operating hours.

Minimum Requirements (cont.)

	PHASE I	PHASE II	PHASE III
Design Lifetime	Not less than 40,000 operating hours for stationary applications and 5,000 hours for transportation	Not less than 40,000 operating hours for stationary applications and 5,000 hours for transportation.	Not less than 40,000 operating hours for stationary applications and 5,000 hours for transportation.
Steady State and Transient Tests Fuel Type(s)	Natural gas, gasoline, or diesel fuel(s) or a representative fuel base on respectively methane, iso-octane, or hexadecane. If multiple applications using different fuels are proposed split the total test time equally among the different fuel types.	Natural gas, gasoline, or diesel fuel(s) corresponding to the proposed primary application(s). If multiple applications using different fuels are proposed split the total test time equally among the different fuel types.	Natural gas, gasoline, or diesel fuel(s) corresponding to the proposed primary application(s). If multiple applications using different fuels are proposed split the total test time equally among the different fuel types.

SOLICITATION COMPONENTS

- 1 Technical Approach
- 2 Cost Estimate
- 3 Statement of Work, Milestones, and Test Plan
- 4 Market Evaluation and Applicants Existing Experience
- 5 Capabilities, Facilities, Team Structure and Personnel

SECA Core Technology Program The Technology Base

Core Technology Program

- The objective: Raise The Baseline of the Technology.
- Projects selected will focused on specific problems encompassing any area of the fuel cell system. Little or no proprietary information from the Industrial Teams.

Core Technology Program (Cont.)

- A mix between short (1-2 year) projects that address the needs of preferably multiple Industrial Teams and a few longer term projects that would add significant value to all projects.
- The Industrial Teams, Core Technology Program participants, and the Project Management Team will meet at least twice a year to make SECA participants aware of results from the Core Technology Program work and promote discussion of needs and approaches.

Intellectual Property -Cornerstone of the Alliance

- "Exceptional Circumstance"
- Promotes Collaboration Limits Redundancy
- Benefits U.S. National Interests
- Non-Exclusive License Core Industry Teams
 - Ready market of potential licensees
 - Best designs vs. highest bidder

Exceptional Circumstance Provisions

- Each Industrial Team will be offered a nonexclusive license for Intellectual Property generated by the Core Technology Program in the solid-oxide field of use.
- Offers must be open for 1 year after issue of a U.S. patent.

SECA/DOD Support Activities

- Core Tech
 - -Accelerate Development
 - -Logistic Fuels
- Militarization
 - Survivability, Shock & Vibration, etc.
- Integration
 - -Balance of Plant Packaging
- Testing

-Laboratory to Field Environment

SECA - Realizing the Vision

SECA:

- An alliance of industry teams, R&D performers, and government funding organizations
- Develops an integrated strategy
- Focuses research

Current SECA Players/Efforts

Industry

National Labs

OAK RIDGE NATIONAL LABORATORY

Advanced Research

Honeywell

SIEMENS Westinghouse

University of Missouri @ Rolla

NORTHWESTERN UNIVERSITY

SECA Timeline

- 1st Annual SECA Workshop
- Industry Team Solicitation Issued
- Proposals Due

- SECA Core Technology
 Program Workshop
- 2nd Annual SECA Workshop
- 2001 Industrial Teams Selected
- Core Technology Program
 Solicitation Issued

June 1-2, 2000

November 3, 2000

January 24, 2001

January 4, 2002

January 3, 2003

February 14 & 15, 2000

March 29-30,2001

April 2001

April 2001

Public Benefits

High Efficiency

Year

Grid Stability

Responding to the Needs of the Nation

President - elect Bush and I are deeply committed to developing an energy policy that includes . . . developing new technologies that conserve fossil fuels and reduce energy-related pollution.

Spencer Abraham, Secretary of Energy

