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Topical Outline
SOFC Component Development Activities
• 1. Cells

– Advanced Cathode Materials Development – Steve Simner
– Advanced Anode Materials Development – Olga Marina

• 2. Metallic Interconnect Development – Gary Yang (Scott Weil, Dean 
Paxton)

• 3. Compressive Seal Development – Matt Chou

(SOFC Modeling discussed in Moe Khaleel’s presentation)
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SOFC Cathode Materials Development
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Cathode Materials Development
Objective: Develop and optimize high performance, 
stable cathode materials for intermediate temperature 
SOFC.
Approach:
• Synthesis (glycine-nitrate) and characterization of candidate cathode 

powders (XRD, dilatometry, SEM, PSA, TGA, electrical conductivity)
• Fabrication of cathodes on anode-supported membranes via screen printing 

and sintering
• Evaluation of cathode peformance by electrochemical testing and SEM
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SOFC Cathode Material Challenges
Intrinsic Properties

High electrocatalytic activity towards oxygen reduction
• High ionic conductivity, high surface exchange kinetics

Thermal expansion compatible with other SOFC materials
Minimal chemical interaction with the electrolyte and interconnect materials 
during fabrication and operation
High electronic conductivity

Porous, stable microstructure to allow gas transport
Optimized interfacial mictrostructure to maximize oxygen reduction kinetics:
• ½ O2 (g) + 2 e’ (cathode)  ---------> O2- (electrolyte)

Stability (chemical, phase, microstructural, dimensional) at high temperature in 
oxidizing atmosphere (1 to 10-6 atm. P(O2))
Adhesion to electrolyte surface – dependent on sintering temperature
Ease of fabrication
Low cost

Processing Related
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Advantages of LSF Cathode
Mixed ionic-electronic conduction
• High oxygen diffusion coefficient, D, and surface exchange 

coefficient, k, relative to LSM.

• Potentially reduces cathodic polarization by extending the cathodic 
reaction sites beyond the triple phase boundaries (TPB).
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Advantages of LSF Cathode
TEC is compatible with other cell/stack components
High electronic conductivity (similar to LSM)
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Sr-Doped LaFeO3 Cathode Development
Introduction of a ceria interlayer substantially improves the performance.

Anode                 YSZ          SDC    LSF

Mixtures of LSF and YSZ, heated to 1300ºC for 2 h, showed no evidence of zirconate 
formation.  LSF peaks were shifted somewhat, possibly due to change in oxygen 
nonstoichiometry. Enhanced performance may be due to high ionic conductivity and 
surface exchange kinetics of the ceria vs. zirconia.
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Anode-supported cell w/ LSF-20 cathode
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S.P. Simner et al., “Optimized Lanthanum Ferrite-
Based Cathodes for Anode-Supported SOFCs,”
Electrochemical and Solid-State Letters, 5, A173 
(2002).
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Achieving Further Improvement
LSF demonstrates good performance and stability, but requires further 
improvement:

LSF-SDC (60-40wt%)
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1) LSF – SDC mixtures
–Optimize composition and 
morphology 

2) Engineering ceria layer
–Optimize density, thickness, 
surface texture

3) Compositional modification of 
LSF: e.g., B-site dopants

Advantage of LSF-SDC mixtures: 
no “burn-in” period during initial operation

750ºC
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SOFC Anode Materials Development
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SOFC Anodes:
Advantages and Disadvantages of Ni/YSZ Anode

Advantages:
• Relatively inexpensive; chemically and physically compatible with YSZ 

electrolyte
• High electronic conductivity
• High catalytic activity for fuel oxidation and for steam reforming of methane
• With these advantages, conventional Ni/YSZ cermet has proven adequate 

for operation on clean H2 or fully reformed fuels
Disadvantages:
• Unstable in oxidizing atmosphere at high temperatures
• Easily poisoned by sulfur
• Tends to promote carbon deposition during internal reformation; high 

catalytic activity for steam reforming can cause excessive thermal 
gradients

• Sintering during operation (particularly at high steam partial pressures 
occuring at high fuel utilization) may decrease activity of anode-electrolyte 
interface; may cause warping in anode-supported cells
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Advanced Red/Ox Tolerant Anode
Objective: Develop alternative to Ni-based anode that offers 
higher tolerance to oxidizing environments (to allow fuel to be 
turned off during system startup and shutdown) and tolerance 
to sulfur-containing environments

Approach:
• Synthesis (glycine-nitrate) and characterization of candidate anode powders
• Fabrication of anodes on electrolyte-supported cells via screen printing and 

sintering
• Evaluate candidate oxide materials using electrical conductivity

measurements, 2- and 3-electrode cell tests (I-V, impedance spectroscopy), 
dilatometry, XRD, SEM
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Candidate Material
for Oxidation Tolerant Anodes

La-doped SrTiO3• Reasonable electrical conductivity (up to 15 S/cm)
• Dimensional and chemical stability under redox cycling
• TEC match to SOFC components
• But, LST exhibits poor activity for hydrogen oxidation
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Half-cell polarization curves

• LST exhibits poor anodic 
performance

- low catalytic activity

• Approaches to improve 
performance: 

- Adding a catalytically 
active second phase

- B-site doping
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Polarization resistances at the doped SrTiO3 / 
YSZ interface at 850oC in H2/H2O=97/3 vs. Pt/air

 
Anode composition Tsint, oC Rp, Ωcm2 
La0.35Sr0.65TiO3  1000 52 
La0.4Sr0.6TiO3  1000 44 
5 wt% Ni+ La0.4Sr0.6TiO3 1000 1 
La0.35Sr0.65Ti0.8Ni0.2O3 1000 48 
La0.35Sr0.65Ti0.8Co0.2O3 1000 39 
La0.35Sr0.65Ti0.8Cu0.2O3 1300 60 
La0.35Sr0.65Ti0.8Cr0.2O3 1000 47 
La0.35Sr0.65Ti0.8Fe0.2O3 1000 21 
(La,Sr)(Ti,Ce)O3, Ti/Ce=19 1000 1.5 
(La,Sr)(Ti,Ce)O3, Ti/Ce=9 1000 0.4 
(La,Sr)(Ti,Ce)O3, Ti/Ce=5.7 1000 0.3 
(La,Sr)(Ti,Ce)O3, Ti/Ce=4 1000 0.2 
(La,Sr)(Ti,Ce)O3, Ti/Ce=1 1000 3.6 
(La,Sr)(Ti,Ce)O3, Ti/Ce=4, Sr/La=9 1000 1 
(Y,Sr)(Ti,Nd)O3  1000 10 
(Y,Sr)(Ti,Pr)O3  1000 43 
(Y,Sr)(Ti,Ce)O3  1000 16 
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XRD patterns (calcined 1200oC/1h)

La-Sr-Ti-Ce-O
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All-ceramic SOFCs: 
Electrochemical Performance
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Work in progress / Future work
Optimize composite phases for electrical 
conductivity and electrocatalytic activity
Perform sulfur tolerance tests
Perform long-term carbon tolerance test
Test steam-reforming of methane and higher 
hydrocarbon fuels
Determine mechanical properties
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SOFC Interconnect Development
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SOFC Interconnects:  Challenges
Mechanical and chemical stability:

High temperature oxidation/corrosion resistance
Multi component gas streams ( H2O, CO2, O2 etc.)
Changing fuel composition (as result of fuel utilization)
Simultaneous fuel and oxidant gas exposures  
Isothermal (high temperature) and thermal cyclic exposures

Low resistance path for electric current
Low materials and fabrication cost

Preferred high temperature interconnect material: Doped lanthanum chromite
High temperature alloys may satisfy these requirements for lower temperature 
(<800ºC) SOFC stacks
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Metallic Interconnects for SOFC
Objectives:

1. Identify and quantify degradation processes in candidate alloys 
2. Develop a cost effective optimized material (bulk and /or coatings 

development) for intermediate temperature operation.

Approach:
- Pre-screening of candidate alloys (completed)
- Screen testing (evaluation of chemical, electrical, mechanical 

properties)
- Materials development
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Potential Candidates
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Data collection/
Literature studies

Pre-selection of 
Candidate Alloys

Properties 
Database*

From handbooks, textbook, journal 
publications, producer’s WebPages, etc

Pre-selection process

Compilation of composition and property 
information of about three hundred heat
resistant alloys.

Composition criteria for pre-selection
Chromia formers

Cr ≥18 wt% for Ni- and Fe-bases;
Cr ≥ 22 wt% for Co-bases;

Alumina formers
Al ≥ 3~4 wt% 
Cr ≥ 15 wt%

*Available upon request
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Screen testing of candidate alloys

Ni-Fe-base superalloys: G-30, Nicrofer 6025, Haynes 230, Haynes 214, Rene 41;
Fe-Ni-base superalloys: Haynes 120, Pyromet, Haynes 556;
Ferritic stainless steels: 430, 446, Ebrite, 29-4C, Al 453

Advantages: CTE match, cost, ease of fabrication
Alumina formers: Fecralloy, alpha-4.

Electrical Screen

Chemical Screen

Mechanical Screen

ASR measurements under cell exposure conditions (air & dual atmosphere)

Oxidation in fuel and oxidant environment
Chemical compatibility with barium-calcium-aluminosilicate base glass seals
Oxide scale thermodynamic stability

Investigation of thermal expansion
Interfacial bonding strength with glass seals

Selected alloys

Screen testing
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TEC Comparison Normalized to Reduced Anode at 640°C
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Oxidation Resistance of 446 and AL 453
Oxidation resistance was measured as a function of time at 550, 700 and 800oC in air.
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ANSI 446: Preoxidized for 300 hours in air at 550, 700 and 800oC.    XRD – 800ºC - M nCr2O4, Cr2O3

AL 453: Preoxidized for 300 hours in air at 550, 700 and 800oC. XRD – 800ºC – Cr2O3, M nCr2O4

550oC

550oC

700oC

700oC

800oC

800oC

Oxidation Study – Surface Analysis of Scale
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ANSI 446 AL 453

Scale microstructures of 446 and AL 453
Samples were pre-oxidized at 800oC for 300 hours in air.

Cr2O3, (Cr,Mn)3O4
Fe2O3, Cr2O3, …

Al2O3, Cr2O3, Fe2O3

(Cr,Mn)3O4, Cr2O3

Cr2O3, Fe2O3, (Cr,Mn)3O4

Cr2O3, (Cr,Mn)3O4, SiO2
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2-Atmosphere Oxidation/Conductivity Test
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Issues / Future Work 

Ferritic stainless steels offer best CTE match to PEN
Concerns include thickness and integrity of scale, resistance of

scale, volatilization of chromium species, and strength of 
interfacial bonds (oxide/metal, oxide/glass)
May require modification of alloy bulk, modification of alloy 

surface, and/or application of protective coatings

Future work:
Complete screening study (oxidation, scale resistance)
Bulk modification
Surface modification (oxide coatings, surface alloying)
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SOFC Seal Development
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SOFC Seals: Challenges
Requirements for seals in planar SOFC stacks
High degree of sealing (hermetic or allowable leak rate) under minimal 

compressive load
Matching CTE (especially for rigid seals)
Electrically insulating
Long-term stability at high T in oxidizing/reducing and humid environments
Inexpensive
Thermal cycle stability
Chemically and physically stable
Thermal shock resistance

Rigid seals (i.e., glass-ceramic) require very close TEC matching of all stack 
components to minimize stresses; Compressive seals may relax these 
requirements somewhat by providing compliance in “x-y” plane.
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Compressive seals for SOFC
Objective: to develop inexpensive, reliable compressive seal materials, 
offering adequate sealing and stable performance under minimal 
compressive load, as an alternative to glass or glass-ceramic seals.

Approach:
• Evaluate “hybrid” seal concept (combination of mica and 

compliant material, e.g., glass)
• Leak rate measurements on simulated SOFC seals
• Post-test evaluation (SEM)
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Basis of seal: Mica
Muscovite: KAl2 (AlSi3O10) (F,OH)2
Phlogopite: KMg3(AlSi3O10)(OH)2

Single crystal sheet

Paper: Discrete flakes with binders Layered silicate structure
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Concept of hybrid compressive seal

Mica: compliant in 
2-D (x-y plane)

Metal/glass 
interlayer: compliant 
in 3-D; seals off 
interfaces

Simple mica layer yields 
excessively high leak 
rates through interfaces

Metal interconnect

Ceramic

Metal interconnect

Ceramic

Metal interconnect

Ceramic

Metal interconnect

Ceramic
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Reduction of leak rate by insertion of glass interlayers

inconel/MSC-AR/IC, 800C
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with glass interlayers
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Results for larger (3” square) compressive seal test

inconel/glass/MScar/glass/IC, 800C vac
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Thermal cycling of hybrid seal

SS430(#800)/G6/MSCx1/G6/IC, 800C, 100psi cycling
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Thermal cycling degradation with hybrid seals

metal

Alumina substrate

metal

Alumina substrate

MSC as-received

glass

P

Frictional damage is limited to the first several sub-layers below glass/mica 
interface; CTE of mica (~6.9 ppm/K) substantially less than CTE of SS or glass (10-13
ppm/K)
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Degradation to mica after thermal cycling
MSC after 24 thermal cycling to 800oC in air (applied stress:100 psi (SS430/G6/MSC-ar/G6/IC))

Future Work: Extend leak rate experiments from coupon testing in air to testing of SOFC 
single cells under typical operating conditions.

•Leak rate measurements
•Effects of leaks on SOFC OCV and I-V behavior
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Summary / Status
Cathode Development
• LSF cathodes exhibit low polarization losses, stable performance in 

anode-supported cell tests
Anode Development
• La-Sr-Ti-Ce oxide anodes exhibit redox and sulfur tolerance, and low 

anodic polarization losses
Interconnect Development
• Database of high temperature alloy properties completed / screen

testing in progress
Seal Development
• Glass/mica “hybrid” compressive seals exhibit very low leak rates 

under moderate applied loads (25-100 psi)
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