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Topical Outline

s SOFC Component Development Activities
* 1. Cells
— Advanced Cathode Materials Development — Steve Simner
— Advanced Anode Materials Development — Olga Marina

* 2. Metallic Interconnect Development — Gary Yang (Scott Weil, Dean
Paxton)

* 3. Compressive Seal Development — Matt Chou

= (SOFC Modeling discussed in Moe Khaleel's presentation)
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SOFC Cathode Materials Development
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Cathode Materials Development

= Objective: Develop and optimize high performance,

stable cathode materials for intermediate temperature

SOFC.
= Approach:

* Synthesis (glycine-nitrate) and characterization of candidate cathode
powders (XRD, dilatometry, SEM, PSA, TGA, electrical conductivity)

* Fabrication of cathodes on anode-supported membranes via screen printing
and sintering

* Evaluation of cathode peformance by electrochemical testing and SEM

U.S. Department of Energy
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SOFC Cathode Material Challenges

= Intrinsic Properties

High electrocatalytic activity towards oxygen reduction
* High ionic conductivity, high surface exchange kinetics
Thermal expansion compatible with other SOFC materials

Minimal chemical interaction with the electrolyte and interconnect materials
during fabrication and operation

High electronic conductivity

m Processing Related

Batiel

Porous, stable microstructure to allow gas transport
Optimized interfacial mictrostructure to maximize oxygen reduction kinetics:
* %0, (g) + 2 € (cathode) --------- > 0% (electrolyte)

Stability (chemical, phase, microstructural, dimensional) at high temperature in
oxidizing atmosphere (1 to 10 atm. P(O,))

Adhesion to electrolyte surface — dependent on sintering temperature
Ease of fabrication

J_OW cost U.S. Department of Energy
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Single Cell Experimental Set-Up
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Advantages of LSF Cathode

s Mixed ionic-electronic conduction

* High oxygen diffusion coefficient, D, and surface exchange
coefficient, k, relative to LSM.
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* Potentially reduces cathodic polarization by extending the cathodic
reaction sites beyond the triple phase boundaries (TPB).
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Advantages of LSF Cathode

= [EC is compatible with other cell/stack components
= High electronic conductivity (similar to LSM)
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Sr-Doped LaFeO, Cathode Development

» Introduction of a ceria interlayer substantially improves the performance.
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Mixtures of LSF and YSZ, heated to 1300°C for 2 h, showed no evidence of zirconate
formation. LSF peaks were shifted somewhat, possibly due to change in oxygen
nonstoichiometry. Enhanced performance may be due to high ionic conductivity and
surface exchange kinetics of the ceria vs. zirconia.
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Anode-supported cell w/ LSF-20 cathode
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Achieving Further Improvement

= LSF demonstrates good performance and stability, but requires further
iImprovement:

1) LSF — SDC mixtures 12

—Optimize composition and L
morphology

LSF-SDC (60-40wt%)
750°C
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2) Engineering ceria layer
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3) Compositional modification of
LSF: e.g., B-site dopants 03}
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Advantage of LSF-SDC mixtures:

no “burn-in” period during initial operation
U.S. Department of Energy
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SOFC Anode Materials Development
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SOFC Anodes:
Advantages and Disadvantages of Ni/YSZ Anode

= Advantages:
* Relatively inexpensive; chemically and physically compatible with YSZ
electrolyte
* High electronic conductivity
* High catalytic activity for fuel oxidation and for steam reforming of methane

* With these advantages, conventional Ni/YSZ cermet has proven adequate
for operation on clean H, or fully reformed fuels

= Disadvantages:
* Unstable in oxidizing atmosphere at high temperatures
* Easily poisoned by sulfur
* Tends to promote carbon deposition during internal reformation; high
catalytic activity for steam reforming can cause excessive thermal
gradients
* Sintering during operation (particularly at high steam partial pressures

occuring at high fuel utilization) may decrease activity of anode-electrolyte

interface; may cause warping in anode-supported cells
U.S. Department of Energy
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Advanced Red/Ox Tolerant Anode

= Objective: Develop alternative to Ni-based anode that offers
higher tolerance to oxidizing environments (to allow fuel to be
turned off during system startup and shutdown) and tolerance
to sulfur-containing environments

= Approach:
* Synthesis (glycine-nitrate) and characterization of candidate anode powders

* Fabrication of anodes on electrolyte-supported cells via screen printing and
sintering

* Evaluate candidate oxide materials using electrical conductivity
measurements, 2- and 3-electrode cell tests (/-V, impedance spectroscopy),
dilatometry, XRD, SEM

U.S. Department of Energy
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Candidate Material
for Oxidation Tolerant Anodes

= La-doped SrTiO,
* Reasonable electrical conductivity (up to 15 S/cm)
* Dimensional and chemical stability under redox cycling
* TEC match to SOFC components
* But, LST exhibits poor activity for hydrogen oxidation
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Half-cell polarization curves
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o LST exhibits poor anodic

performance
- low catalytic activity

» Approaches to improve
performance:

- Adding a catalytically
active second phase

- B-site doping

U.S. Department of Energy
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Polarization resistances at the doped SrTiO, /
YSZ interface at 850°C in H,/H,0=97/3 vs. Pt/air

Batielle

Anode composition Tsint °C | R, Qcm’
Lao35Sro.e5TiO, 1000 52
Lao_4SI’o,6TiO3 1000 44
5 Wt% Ni+ Lag4Sro6TiO, 1000 1
|L20.35Sr0.65 T10.8Ni0.203 1000 48
L.20.35Sr0.6510.8C00.203 1000 39
L80,358r0_65Ti0_8CUo_203 1300 60
Lao_358r0_65Ti0_8C|'0_203 1000 47
Lao 35Srges5Tig.sFeo 203 1000 21
(La,Sr)(Ti,Ce)Os3, Ti/Ce=19 1000 1.5
(La,Sr)(Ti,Ce)Os3, Ti/Ce=9 1000 0.4
(La,Sr)(Ti,Ce)Os, Ti/Ce=5.7 1000 0.3
(La,Sr)(Ti,Ce)Os, Ti/Ce=4 1000 0.2
(La,Sr)(Ti,Ce)Os, Ti/Ce=1 1000 3.6
(La,Sr)(Ti,Ce)QO,, Ti/Ce=4, Sr/La=9 1000 1
(Y,Sr)(Ti,Nd)O, 1000 10
(Y,Sr)(Ti,Pr)O, 1000 43
(Y,Sr)(Ti,Ce)O, 1000 16
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XRD patterns (calcined 1200°C/1h)
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All-ceramic SOFCs:
Electrochemical Performance
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Work in progress / Future work

= Optimize composite phases for electrical
conductivity and electrocatalytic activity

s Perform sulfur tolerance tests
= Perform long-term carbon tolerance test

= [est steam-reforming of methane and higher
hydrocarbon fuels

s Determine mechanical properties

U.S. Department of Energy
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SOFC Interconnect Development
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SOFC Interconnects: Challenges

Mechanical and chemical stability:
High temperature oxidation/corrosion resistance
Multi component gas streams ( H,0, CO,, O, etc.)
Changing fuel composition (as result of fuel utilization)
Simultaneous fuel and oxidant gas exposures
Isothermal (high temperature) and thermal cyclic exposures
Low resistance path for electric current
Low materials and fabrication cost

Preferred high temperature interconnect material: Doped lanthanum chromite

High temgerature alloys may satisfy these requirements for lower temperature
(<800°C) SOFC stacks

U.S. Department of Energy
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Metallic Interconnects for SOFC

= Objectives:

Identify and quantify degradation processes in candidate alloys

2. Develop a cost effective optimized material (bulk and /or coatings
development) for intermediate temperature operation.

—_—

Approach:

- Pre-screening of candidate alloys (completed)

- Screen testing (evaluation of chemical, electrical, mechanical
properties)

- Materials development

U.S. Department of Energy
Ba"e“e Pacific Northwest National Laboratory



Potential Candidates

Fe " :
Austenitic Overall, heat resistant

stainless steels alloys could be potential
Fe-Ni-base candidates, including

superalloys

» Ferritic stainless steels

Ferritic » Austenitic stainless steels
stainless steels \ Ni-Fe-base > Fe-Ni-base superalloys
| - \ superalloys
%5 » Ni-Fe-base superalloys
4
Cr-base / $ Y » Cr-base alloys
alloys » Plus
K
&) 1 » Co-base superalloys
i 3
Cr Ni
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Pre-selection process

Data collection/ From handbooks, textbook, journal
Literature studies publications, producer’s WebPages, etc
l Compilation of composition and property
Properties information of about three hundred heat
Database* resistant alloys.

Composition criteria for pre-selection
» Chromia formers
Cr =18 wt% for Ni- and Fe-bases;
Pre-selection of Cr = 22 wt% for Co-bases;
‘ Candidate Alloys \ > Alumina formers
Al = 3~4 wt%
Cr=15wt%

* . U.S. Department of Energy
Ba"e“e Available upon requeSt Pacific Northwest National Laboratory



Screen testing of candidate alloys
W

» Ni-Fe-base superalloys: G-30, Nicrofer 6025, Haynes 230, Haynes 214, Rene 41;
» Fe-Ni-base superalloys: Haynes 120, Pyromet, Haynes 556;
> Ferritic stainless steels: 430, 446, Ebrite, 29-4C, Al 453
»Advantages: CTE match, cost, ease of fabrication
» Alumina formers: Fecralloy, alpha-4.
@ Screen testing

Chemical Screen = Oxidation in fuel and oxidant environment

& Chemical compatibility with barium-calcium-aluminosilicate base glass seals
& Oxide scale thermodynamic stability

Electrical Screen = ASR measurements under cell exposure conditions (air & dual atmosphere)

Mechanical Screen | “ Investigation of thermal expansion
u [nterfacial bonding strength with glass seals

U.S. Department of Energy
Ba"e“e Pacific Northwest National Laboratory



CTE of Ferritic Stainless Steels

TEC Comparison Normalized to Reduced Anode at 640°C
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Oxidation Resistance of 446 and AL 453

Oxidation resistance was measured as a function of time at 550, 700 and 800°C in air.
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Oxidation Study — Surface Analysis of Scale

ANSI 446: Preoxidized for 300 hours in air at 550, 7

i‘f'i‘.“.‘i‘:;
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Scale microstructures of 446 and AL 453

Samples were pre-oxidized at 800°C for 300 hours in air.
(Cr,Mn);0,, Cr,0,4 Cr,04, (Cr,Mn);0,
Cr,0s, Fe,0,, (Cr,Mn),0, Fe,0;, Cry0s, ...

- Cr,0;, (Cr,Mn);0,, SiO, Al,03, Cry0;, Fe,05

Zaku

ANSI 446 AL 453
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Measured ASR of SS446 and AL 453

e
ASR was measured as a function of temperature, after heat treatment at 550, 700 and 800°C for 300 hours in
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2-Atmosphere Oxidation/Conductivity Test

Pressure

Fulel

Temperature: R.T. - 1000°C
Current Density: 0 - 4.0 A/cm?

Time at Temperature: Variable
Atmospheres: Air and Various Fuels
Sample Type/Thickness: Variable
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Issues / Future Work

= Ferritic stainless steels offer best CTE match to PEN

=Concerns include thickness and integrity of scale, resistance of
scale, volatilization of chromium species, and strength of
interfacial bonds (oxide/metal, oxide/glass)

=May require modification of alloy bulk, modification of alloy
surface, and/or application of protective coatings

=Future work:

=Complete screening study (oxidation, scale resistance)
=Bulk modification

=Surface modification (oxide coatings, surface alloying)

U.S. Department of Energy
Batielle

Pacific Northwest National Laboratory



SOFC Seal Development
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SOFC Seals: Challenges

Requirements for seals in planar SOFC stacks

=High degree of sealing (hermetic or allowable leak rate) under minimal
compressive load

sMatching CTE (especially for rigid seals)

nElectrically insulating

sLong-term stability at high T in oxidizing/reducing and humid environments
sinexpensive

=Thermal cycle stability

=sChemically and physically stable

=Thermal shock resistance

Rigid seals (i.e., glass-ceramic) require very close TEC matching of all stack
components to minimize stresses; Compressive seals may relax these
requirements somewhat by providing compliance in “x-y” plane.

U.S. Department of Energy
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Compressive seals for SOFC

= Objective: to develop inexpensive, reliable compressive seal materials,
offering adequate sealing and stable performance under minimal
compressive load, as an alternative to glass or glass-ceramic seals.

= Approach:

* Evaluate “hybrid” seal concept (combination of mica and
compliant material, e.g., glass)

* | eak rate measurements on simulated SOFC seals
* Post-test evaluation (SEM)

U.S. Department of Energy
Ba"e“e Pacific Northwest National Laboratory



Basis of seal: Mica

o Phlogoplte KMg3(AIS|3O10)(OH)2

Slngle crystal sheet

XZBB 108 Mm 8138823

Layered silicate structure

U.S. Department of Energy
Pacific Northwest National Laboratory



Concept of hybrid compressive seal

Simple mica layer yields
excessively high leak
rates through interfaces

Mica: compliant in
2-D (x-y plane)

Metal/glass
interlayer: compliant
in 3-D; seals off

mte rfaCeS U.S. Department of Energy
Ba"e“e Pacific Northwest National Laboratory




Reduction of leak rate by insertion of glass interlayers

Orders of magnitude reduction in leak rate (vs. plain
mica) for single crystal type mica in hybrid design
with glass interlayers

inconel/MSC-AR/IC, 800C
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Results for larger (3” square) compressive seal test

Inconel/glass/IMSC/glass/alumina, 800°C air
Consistent results with small (1.3") sample
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Thermal cycling of hybrid seal

Abrupt increase in leak rate during initial cycles —
Modest increase in leak rate subsequently

4 800°C/1hi

thermal cycling
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Thermal cycling degradation with hybrid seals

P

. glass — . I )

MSC as-received \_‘lill

Alumina substrate / Alumina substrate

Frictional damage is limited to the first several sub-layers below glass/mica
interface; CTE of mica (~6.9 ppm/K) substantially less than CTE of SS or glass (10-13

ppm/K) U.S. Department of Energy

Ba"e“e Pacific Northwest National Laboratory




Degradation to mica after thermal cycling

MSC after 24 thermal cycling to 800°C in air (applied stress:100 psi (SS430/G6/MSC-ar/G6/IC))

nFuture Work: Extend leak rate experiments from coupon testing in air to testing of SOFC
single cells under typical operating conditions.

*| eak rate measurements

*Effects of leaks on SOFC OCV and I-V behavior U.S. Department of Energy

Baﬂe“e Pacific Northwest National Laboratory
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Summary / Status

= Cathode Development

* LSF cathodes exhibit low polarization losses, stable performance in
anode-supported cell tests

= Anode Development

. La-Sr-Ti-Ce pxiqe anodes exhibit redox and sulfur tolerance, and low
anodic polarization losses

= Interconnect Development

* Database of high temperature alloy properties completed / screen
testing in progress

= Seal Development

* Glass/mica “hybrid” compressive seals exhibit very low leak rates
under moderate applied loads (25-100 psi)

U.S. Department of Energy
Ba"e“e Pacific Northwest National Laboratory
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