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Objectives

• To develop/adapt/recommend test techniques to 
evaluate the properties and behavior of materials and 
components for SOFC.

• To identify and understand the mechanism responsible 
for the failure of materials and components for SOFCs.

• To develop methodologies for predicting the durability 
and reliability of materials and components for SOFCs.

In collaboration with industrial teams and other Core 
Technology Program participants,
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Background

• a period with decreasing failure rate at the 
beginning of service life

• a period with constant failure rate

• Increase of the failure rate at the later part of the 
life cycle.

The failure rate in complex systems usually 
follows three stages
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Approach: Background

Bathtub Curve
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Approach

• Identification of mechanism that dominate the 
failure of SOFC materials and components at 
short times.

• Identification of mechanisms that dominate the 
failure of SOFC materials and components at long 
service times/cycles.  

• Integrate information into life-prediction 
methodologies.
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temperature distribution

stress distribution

distribution of strengths

C-CARES Reliability

experimentally-determined
strength testing + fractography

Analytical

+

experimentally-determined 
physical and mechanical 

properties

component

Weibull parameters Weibull parameters are 
determined by the maximum 

likelihood method.  They 
represent material design data
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Experimental Techniques for Mechanical 
Characterization of Materials for SOFC

Infrared imaging – IR

Resonant Ultrasound 
Spectroscopy – RUS

(SEM)

Biaxial tests (Ring-on-ring) - ROR

Nanoindentation - NI

Double Torsion - DT

Microscopy – OM and SEM

Defects

Elastic constants

Strength

Young’s Modulus 

Fracture Toughness

Hardness

Fractography

Microstructural 
Characterization

Fracture   
Resistance
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Infrared Imaging

• Crack propagation 
Study

Hot plate

Specimen

IR camera

• Characterization of 
Defects
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Resonant Ultrasound Spectroscopy
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Unique “fingerprint” of each 
sample.

Depends on:

• Geometry (size and shape)

• Elastic properties of the 
material 

• Defects
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Biaxial Testing – Ring-on-Ring 

•Biaxial Strength

•Effect of defects, 
temperature and 
environment on 
strength.

Loading ring

Specimen

Support ring
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Double torsion test

• Fracture toughness, KIC

• Crack Growth

Load Specimen

Crack
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Indentation Method

Nano-indentation

• Nanohardness

• Young’s Modulus

• Fracture Resistance
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Raman Spectroscopy

 Camera 

Sample/Stage 

 
Raman  
Spectrometer 

Heater 

Sample Glass Window 

Gas Inlet Gas Outlet  

Laser 
Bean 
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Characterized Materials
• Electrolyte:

8mol% YSZ

• Anode:
NiO/8mol% YSZ Cermet

*Ni/8mol% YSZ Cermet

* reduced in hydrogen

• Cathode:
LSM
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Characterized Materials

• Disks 1” ∅
l Resonant Ultrasound Spectroscopiy
l Infrared Imaging
l Biaxial strength
l Nanoindentation
l Raman Spectroscopy

• Notched Plates
Fracture toughness
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Characterization of Electrolyte Materials

8%mol YSZ - porosity: 8%

Elastic Properties at Room Temperature:
RUS: E =175±8 GPa 

G = 67± 3 GPa

ν =0.32 ± 0.01

Nanoindentation: displacement ≈800 nm

surface E =196±6 GPa H =13±0.5 GPa

cross-section E =176±4 GPa H =12.6 ±0.5 GPa

A. Selcuk & A. Atkinson, J.Euro.Ceram.Soc. 17 (1997)

8% porosity E= 176 GPa, G=67 GPa

fully dense: E=220 GPa, G=83 GPa

Impulse excitation technique
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Characterization of Electrolyte Materials

Biaxial Strength 
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Distribution of Strengths

strength mechanical
load

Stress (MPa)
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Characterization of Electrolyte Materials

delamination

Before testing After testing
Failure with branched 
crack formation from the 
loading ring area

Primary crack formation

Secondary crack 
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Characterization of Electrolyte Materials
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Characterization of Electrolyte Materials
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Characterization of Anode Materials

NiO/YSZ Cermet– ORNL (2, 4 and 6 layers; 0.5, 1 and 1.5 mm thick) – 30% 
porosity
NiO/YSZ Cermet – NexTech (multilayer, 1mm thick)

Elastic Properties at Room Temperature:
RUS*:

ORNL:  E =103±6 GPa G = 40± 2.5 GPa ν =0.29 ± 0.03

NexTech:  E =106±6 GPa G = 41± 2.4 GPa ν =0.29 ± 0.01

A. Selcuk & A. Atkinson, J.Euro.Ceram.Soc. 17 (1997)

Impulse excitation technique – characterized anode 75mol%NiO/YSZ materials up to 14% porosity

Extrapolated data for 30 % porosity:

Exponential law M=Moexp(-bP) : E= 99 GPa, G=38 GPa

Linear law M=Mo(1-bP) : E= 76 GPa, G=30 GPa

Non-linear law M=Mo(1-(bP)/(1+(b-1)P) : E= 99 GPa, G=38 GPa

Composite Sphere Method (CSM) M=Mo(1-P2)/(1+bP) : E= 83 GPa, G=32 GPa
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Microstructural modeling

Reduced anode, SEM BSE 

unreduced anode, SEM BSE 
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Characterization of Anode Materials

mσ0, MPa
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Weibull Distribution
σave, MPaSample

NiO/8mol% YSZ Cermet– ORNL reduced in 4% H2 at 
600oC for 4 h

NiO/8mol% YSZ Cermet – NexTech reduced in 
hydrogen

Biaxial Strength at Room 
Temperature:
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Characterization of Anode Materials

100µm

NiO/YSZ Cermet– ORNL (4 layers; 1 mm thick) – 30% porosity
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Characterization of Anode Materials
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at Room Temperature:
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Precracked @ 0.02 mm/min and tested @ 1 mm/min
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Characterization of Anode Materials

Optical 
Microscopy 

0.5 mm

50 µm

NiO/8mol% YSZ Cermet– NexTech 
reduced in hydrogen

50 µm
50 µm
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Characterization of Anode Materials

SEM 

Back Scattered 

⇐ ⇒

SE

⇐ ⇒
NiO/8mol% YSZ Cermet – NexTech NiO/8mol% YSZ Cermet– NexTech 

reduced in hydrogen

Interlaminar

porosity
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Microstress measurements
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Microstress measurements

10 min at 400oC
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Microstress measurements

48 min at 400oC
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Summary

• NDE techniques (infrared imaging, RUS) have been adapted/used
to detect defects (e.g. delamination, voids…) in SOFC materials.  
Powerful tools for quality control.

• Test methods have been adapted to determine elastic properties, in-
plane biaxial strength and fracture toughness of SOFC at RT and 
elevated temperatures, in air or controlled environments.

• Fractographic analysis were used to identify defects and 
mechanisms responsible for failure of SOFC materials.

• Methodology can help industrial teams address short term failures to 
increase reliability of SOFCs.  It also constitutes the basis for the 
evaluation of long-term behavior of these materials.
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Summary

Bathtub Curve
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Current and Future Work

• Characterization of SOFC materials at high 
temperatures (strength, fracture toughness, elastic 
properties) in air/controlled environments.

• Effect of porosity and pore size on elastic properties, 
strength and fracture toughness.  OOF modeling.

• Identification of defects and microstructural features 
responsible for failure.

• Long term reliability, transient, time-dependent 
phenomena.
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Interaction with Task and Program 
Members

• Integration of interfacial modes of failure in probabilistic 
life prediction framework.

• Effect of chemical gradients on physical properties (e.g. 
– elastic constants, strength).

• Integration with PNNL modeling work (temperature and 
stress distributions).
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temperature distribution

stress distribution

distribution of strengths

C-CARES Reliability

experimentally-determined
strength testing + fractography

Analytical

+

experimentally-determined 
physical and mechanical 

properties

component

Weibull parameters Weibull parameters are 
determined by the maximum 

likelihood method.  They 
represent material design data


