Cummins Power Generation
10kWe SOFC Power System Commercialization Program
Team Program Overview
November 16, 2001
Pittsburgh, PA
• In 1992, Cummins acquired Onan Corporation
• Commercial Gensets are branded Cummins Power Generation
• Consumer Gensets (RV, Marine) are branded Onan
• Cummins Engine Company renamed Cummins Corporation to reflect diversification and Power Generation focus
Cummins revenues - $6.6 billion in 2000

- Automotive: $3.2 billion
- Power Generation: $1.3 billion
- Filtration: $1.1 billion
- Industrial: $1.0 billion
Cummins Power Generation is the largest volume manufacturer and distributor of premium Gensets in the 3kWe to 12 kWe size range for:

- **Commercial**
 - Standby
 - Peaking
 - Distributed Generation
- **Consumer**
 - Recreational Vehicle (RV)
 - Marine
 - Portable
- **Department of Defense**
• CPG Sales $1.3 billion in 3kWe to 2 MWe range
• $200 million in 3kWe to 12 kWe range
• System meeting SECA program cost and performance targets will displace current reciprocating engine technology in 3-12 kWe range
• Driving factors are low noise, low vibration, high reliability, and low emissions
Cummins Power Generation Products Represent Innovation
• 170 distribution centers worldwide
• Manufacturing sites in U.S., U.K., Singapore, China
Cummins Power Generation leads the industry in generator manufacturing

Cummins Power Generation Americas
Minneapolis Headquarters and Manufacturing
Existing Markets
Identified in SECA Program

• Recreational Vehicle (RV)
• Commercial Mobile
• Telecommunications Standby
CPG Fuel Cell Product Vision
• Base rating 10kWe
• Supplemented by battery boost system
• Control provides load sharing between battery and SOFC
• LP (Propane)
• Simple and cost effective
• Already in use on RV’s for cooking, heating, water heating, refrigeration, Gensets
• Market research indicates customers will accept LP on vehicles to gain benefits
• LP may gain market share as propulsion fuel over Fuel Cell development period
Operating Mode

• Start-up sequence initiated from cold when power need is anticipated
• Development program will minimize start-up time
• Battery boost inverter can power loads during warm-up
• Idle mode during low electrical demand
• Shut down when no power need is anticipated for extended time
Installation

• Same size envelope -- 0.4 m3 (15 ft3) as Diesel Genset
Recreational Vehicle Market
Why do RV’s need Power Generation?

To run:

- Air conditioners
- Microwave ovens
- TV’s
- VCR’s
- Blenders
- Hair Dryers
- Lighting
- Water pumps
- Battery chargers
Why Fuel Cells for RV’s?
- Noise
- Vibration
- Reliability
- Environmentally responsible
Gasoline RV GenSet Noise Levels

4kw - 3 Meters - Uninstalled

- 5.0/6.5 Emerald
- 5.5/7 Marquis
- 4.0 Microlite
- Marquis Platinum

Noise dBA

1980 | 2000
Diesel RV GenSet Noise Levels

7.5 kWe

4kw- 3 Meters - Uninstalled

7.5 Quiet Diesel

12.5 Quiet Diesel

7.5 kWe Noise Levels:
- 1980: 75 dBA
- 2000: 64 dBA

Noise dBA Scale:
- 80
- 79
- 78
- 77
- 76
- 75
- 74
- 73
- 72
- 71
- 70
- 69
- 68
- 67
- 66
- 65
- 64
Commercial Mobile Markets
Commercial Mobile

- Utility boom and lift trucks,
- Telephone repair trucks,
- Emergency and rescue vehicles
- Vendor vans
- Mobile health care
- Product requirements similar to RV
Commercial Mobile
Market Drivers

• High reliability
• Low maintenance
• Low noise
• Increasing awareness of emissions
Telecommunications
Markets
Telecommunication Emergency Power

- Wireless cell site cabinets
- Remote fiber optic network terminal cabinets
- Coax broadband cable cabinets
Telecommunications Applications

Wireless cell site with Cummins Genset.

Fiber optic network site with Cummins Genset.
Telecommunications
Market Drivers

- High reliability
- Suitable for long term storage without degradation
- Lower scheduled maintenance
- Low noise for use in residential areas
Cummins Power Generation
SOFCo
10kWe Commercialization Team
• Electronic Controls
• Power electronics
• Fuel systems
• Air handling systems
• Noise and vibration
• System integration
• Manufacturing
• Marketing, Sales, Distribution

Planar SOFC technology
Reformer technology
Material Science
Heat Transfer
Computational Fluid Dynamics
Numerical modeling
Multi-Layer Ceramic (MLC) manufacturing
CPG SOFC System Architecture

- Control
- Power Electronics
- BOP
- Hot Box
- Storage Batteries
- LP Fuel
- Air
- Exhaust
- Wireless Equipment Cabinet
- Genset
- Utility Power
- Antenna
Team responsibilities

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Integration</td>
<td>Control system logic and algorithms, BOP interface</td>
</tr>
<tr>
<td>SOFC Fuel Cell / Hot Box</td>
<td>SOFC stack, manifolding, heat exchange, high temp insulation</td>
</tr>
<tr>
<td>Balance of Plant (BOP)</td>
<td>Fuel system, air system, insulation, shock and vibration isolation, packaging</td>
</tr>
<tr>
<td>Control</td>
<td>System level control for all sub-systems including SOFC-Battery Load Sharing</td>
</tr>
<tr>
<td>Power Electronics</td>
<td>DC Boost and Inverter, Power Conditioning</td>
</tr>
<tr>
<td>LP Fuel Storage</td>
<td>Conventional Pressure Tank</td>
</tr>
<tr>
<td>Storage Batteries</td>
<td>Conventional Wet Lead-Acid</td>
</tr>
</tbody>
</table>
Commercialization of 10 kWe SOFC Power System

Objective: develop a SOFC system including
- SOFC stack
- Balance of plant
- Factory cost of $400/ kWe net by end of Phase III
- Commercialized at earliest possible date

- Phase I -- 4 years
- Phase II -- 3 years
- Phase III -- 3 years
Commercialization of 10 kWe SOFC Power System

• Phase I -- 4 years
• Objectives: develop a fuel cell system capable of:
 1) demonstrating the SECA Phase I requirements at $800 / kW
 2) removing base technology barriers to commercialization in the target markets
Commercialization of 10 kWe SOFC Power System

• Phase II -- 3 years
• Objectives: continued development and improvement to:
 1) demonstrate the SECA Phase II requirements at $600 / kW
 2) releasing the Phase II design to limited production
Commercialization of 10 kWe SOFC Power System

• Phase III -- 3 years
• Objectives: further enhance the fuel cell system to:
 1) demonstrate the SECA Phase III requirements at $400 / kW
 2) release the Phase III design to full production
Program **Benefits** for identified Markets...

- Low noise
- Low vibration
- High reliability
- Clean power
Project challenges...

• Start up time
• Idle fuel consumption
• Power density
• Cost, cost, cost...
SECA Core Technology Program
Cummins Power Generation
10kWe SOFC Power System
Commercialization Program
Program Overview
Pittsburgh, PA
November 16, 2001

This presentation was prepared with the support of the U.S. Department of Energy, under Award no. DE-FC26-01NT41244. However, any opinions, findings, conclusions, or recommendations expressed herein are those of the author(s) and do not necessarily reflect the views of the DOE.