Development of Ceramic Composites as SOFC Anodes

Olga A. Marina
Pacific Northwest National Laboratory
Richland, WA 99352 USA

Presented by Jeff W. Stevenson
SECA Core Technology Program Review Meeting
Albany, NY, September 30, 2003
Existing Technology: Nickel-YSZ Anode

Advantages
- High electronic conductivity
- Excellent activity for clean reformed fuels
- Chemically and physically compatible with YSZ electrolyte
- Relatively inexpensive

Disadvantages
- Sintering / agglomeration during operation
- Sensitive to oxygen
- Too high activity towards steam reforming
- Coking in hydrocarbons
- Easy poisoning by sulfur
- Toxic

Objective: Develop a high-performance anode that offers higher tolerance to oxidizing, hydrocarbon-containing and sulfur-containing environments
Approach

Synthesis and characterization of candidate oxides
- Glycine-nitrite synthesis ⇒
- Calcination at 1200°C ⇒
- XRD analysis ⇒
- Attrition milling ⇒
- Electrode ink ⇒
- Screen printing on YSZ ⇒
- Sintering at 900-1200°C

Evaluation of the electrical, thermal and thermo-mechanical properties

2- and 3-electrode cell tests
Ceramic anode properties

La-doped SrTiO$_3$
- Reasonable electrical conductivity (up to 15 S/cm)
- Dimensional and chemical stability under red-ox cycling
- TEC compatibility with other cell components
- Good adhesion to YSZ at relatively low temperatures

But....
- Low catalytic activity for hydrogen oxidation

$T=850^\circ$C in wet H_2 vs. Pt/air
Effect of cerium oxide addition

(Ta,Sr)TiO₃-Ce(La)O₂

La₀.₃₅Sr₀.₆₅TiO₃

Current density (A/cm²)

Overpotential (V)

T=850°C in wet H₂ vs Pt/air
2 phase anode: Titanate/Ceria composite

Electronic conductivity provided by doped titanate.
Activity towards fuel oxidation provided by ceria.
TEM Analysis of 2-phase ceramic anode

Diffraction pattern obtained from a typical “broad” area of La-Sr-Ti-Ce-O (35 mol% of La (A-site basis) and 15 mol% of Ce (B-site basis)) confirms presence of 2 phases. The SrTiO$_3$ reference pattern is superimposed in blue (bottom left) and that of CeO$_2$ is imposed in red (bottom right).
Composite Sr(La)TiO$_3$ – Ce(La)O$_{2.\delta}$ anodes

I. Single combustion synthesis
 - Simultaneously co-synthesized in the same reactor vessel from an aqueous glycine/nitrate solution
 - Excellent activity for electrochemical H$_2$ oxidation
 - Withstand multiple reduction-oxidation cycles
 - Tolerate exposures to hydrogen sulfide
 - TEC compatibility with other cell components

T=750°C
(1) H$_2$/H$_2$O/N$_2$=77/3/20
(2) H$_2$/H$_2$O/N$_2$=77/3/20 + 6ppm H$_2$S
Thermal Redox Cycling

I: Exposure to reducing environment at 800°C (corresponding to SOFC anode environment during operation)

II: Exposure to air during thermal cycling (corresponding to conditions an unprotected anode would experience during system startup and shutdown)
Composite Sr(La)TiO$_3$-Ce(La)O$_2$ anode

Cerium oxide addition to Sr(La)TiO$_3$ results in remarkable improvement in the performance of the cell.

Electrolyte-supported cell (160 µm YSZ)
Fuel: $\text{H}_2/\text{H}_2\text{O}=97/3$
Oxidant: air
Electrolyte: 150 µm YSZ
Composite Sr(La)TiO$_3$ – Ce(La)O$_{2-\delta}$ anodes

II. Mixing of separately prepared powders

- Tailoring of the individual phases for optimized composite performance
- Adjusting the amount of dopant in each oxide (to optimize electronic conductivity and/or mixed conductivity).
- Similar electrocatalytic activity for hydrogen oxidation in the temperature range 700-900°C

![Graph showing polarization resistances of composite anodes in H$_2$/H$_2$O=97/3.](image)

1 is x=0.25, y=0.5 (50:50); 2 - x=0.35, y=0.3 (50:50);
3 - x=0.35, y=0.5, (60:40); 4 - x=0.25, y=0.3 (50:50);
5 - x=0.25, y=0.3 (60:40), 6 - x=0.25, y=0.4 (70:30).
Polarization curves of composite anodes

Co-synthesized Sr(La)TiO₃-Ce(La)O₂, where Ti/Ce=9, and mixed Sr₀.₆₅La₀.₃₅TiO₃-Ce₀.₅La₀.₅O₂₋δ (60:40 molar ratio) composite anodes tested vs. Pt/air at H₂/H₂O=97/3.

It is possible to achieve comparable or improved properties with mixed powder anodes.
Polarization curves of a composite anode in wet hydrogen vs. Pt/air after several oxidation-reduction cycles

- Half-cell test
- Oxidized by exposing to air at 800°C
- Reduced by $\text{H}_2/\text{H}_2\text{O}=97/3$ at 800°C
- No decrease in performance
- No mechanical failure
Effect of oxidation-reduction cycles on the cell area specific resistance at 0.7 V

- Full cell test
- T = 800°C.
- Fuel is H₂/H₂O=97/3
- Oxidant is air

- No change in cell resistance after several redox cycles
- No loss in dimensional stability
Effect of H₂S addition to the hydrogen fuel at 800°C

- Only minor change in performance after operating for 400 hs in the presence of 26 ppm H₂S
- Not affected by short-term exposures to 190 ppm H₂S in N₂
- No sulfur compounds detected by the post-mortem EDS/XRD examination
Methane and CO oxidation at 800°C

- Lower activity for CO and CH₄ oxidation in respect with H₂ oxidation
- No degradation in performance after testing in “dry” methane (3%H₂O) for 20 h
- No anode sooting after operating at CO/H₂O=22/3 for 120 h and CH₄/H₂O=22/3 for 41 h
- Immediate return to the initial performance if exposed to H₂
Summary

Doped strontium titanate - doped ceria ceramic composites

- Demonstrate excellent performance in hydrogen in the temperature range 750-850°C
- Operable in hydrogen at low temperatures (600-700°C)
- Exhibit excellent tolerance to oxidizing environments
- Resistant to carbon deposition in “dry” methane and CO
- Tolerant to sulfur poisoning

All-ceramic anode shows good promise for use in SOFCs
Limitations for the practical application of the composites as SOFC anodes

- Low electrical conductivity for use as self-support
- Potential reactivity with the YSZ electrolyte at high processing temperatures
- Loss of electrocatalytic activity following high processing temperatures

Contact: olga.marina@pnl.gov; phone: (509)-375-2337
Future work

- Evaluation/optimization of two-phase anodes prepared by mixing doped titanate and ceria powders
- Long-term anode testing for sulfur and carbon tolerance
- Anode tests on a variety of hydrocarbon fuels
- Scale-up testing to include larger dimension cells
Acknowledgements

Financial support from the SECA Core Technology Program, U.S. Department of Energy, National Energy Technology Laboratory (NETL)

Contributors:

Jeff Stevenson
Steve Simmer
Kerry Meinhardt
Matt Walker
Larry Pederson
Prabakar Singh