SECA Core Program – Recent Development of Modeling Activities at PNNL

MA Khaleel

Email: moe.khaleel@pnl.gov Phone (509) 375-2438

KP Recknagle, DR Rector, J Deibler, RT Pagh, RE Williford, LA Chick

Pacific Northwest National Laboratory Richland, WA 99352

June 19, 2002

Technical Issues and R& D Objectives

Technical Issues

 Concurrent management and control of thermal, physical, chemical and electrochemical processes over various SOFC operational parameters.

Objectives

Develop modeling and simulation tools to be used by the SECA vertical teams as an integral part of the design process. Tools to be used for:

- System design requirements roll-out
- Sub-system component design
- Microstructural and material design/optimization
- Control design
- Life prediction

Technical Approach

Cell Electrochemistry Performance Model

Model Output

- •Cell parameters can be adjusted so that one set of cell parameters provide excellent fit of a family of IV curves for a "unit" cell operated over a range of temperatures and a range of hydrogen concentrations.
- The "calibrated" model can then be used to predict large stack performance by applying it within a CFD code to computational unit cells.

Topics for Continuum Electrochemistry Modeling

- Calculation Flow Diagram For 1-Cell Stack
- Generic Cross-Flow Case
- Alternate Flow Configurations
- Transition from Transient Heating to Steady State
- Calculation Flow Diagram For Multiple-Cell Stacks
- Multiple Cell Stack Modeling Results

STAR-CD/EC (1-Cell Stack) Flow Diagram

MARC/EC (1-Cell Stack) Flow Diagram

Cross-Flow Case: Conditions

- Inflow Air & Fuel Temperature = 625°C
- Air delivery rate = 15 gm/sec/60cells
- Fuel delivery rate = 1.08 gm/sec/60cells (9.5x10⁻⁴ moles/sec)
 - Composition: shifted to equilibrium at 625 °C

```
- [H2] = 0.37443
- [H2O] = 0.03449
- [CO] = 0.33662
- [CO2] = 0.06759
- [N2] = 0.18687
```

- Cell Voltage = 0.7 (as in all other cases)
- Cyclic boundary conditions at top and bottom of unit cell.

Cross-Flow Case: Results

62% Fuel Utilization Case:

Current Density = 0.300-1.46 (0.687 A/cm2) Heat Generation = 0.21 - 0.99 (0.477 W/cm2) PEN Temperature = 643 - 912 (769 °C)

	in, moles/s	out, moles/s	
h2	3.5480E-04	1.3963E-04	
h2o	3.2680E-05	2.4776E-04	
со	3.1898E-04	1.1871E-04	
co2	6.4050E-05	2.6423E-04	
n2	1.7706E-04	1.7704E-04	
moles/s	9.4756E-04	9.4737E-04	

Fuel Utilization= 61.7%

Cross-Flow Case: Results (Continued)

Alternate Flow Configurations – Steady State

Flow Conditions configurati on		Results				
	Air delivery, gm/s @ °C	Fuel delivery, gm/s @ °C	ΔT _{PEN} , °C	T _{PEN} , °C	I _{ave} , A/cm ²	Fuel Utilization
Cross-flow	0.25 @ 625	0.018 @ 625	269	769	0.69	62%
Co-flow	0.25 @ 625	0.018 @ 625	184	763	0.71	64%
Counter- flow	0.25 @ 595	0.018 @ 595	267	758	0.73	63%

Alternate Flow Configurations – Steady State

Modeling of Transition from Transient to Steady State – Cross Flow Case

- Is the heating method sound?
- Will start of reaction cause instabilities?
- Can we actually shorten the "startup" time?

STAR-CD/EC (Multiple-Cell) Flow Diagram

Steady State: 16-Cell Stack Model

Fuel Delivery: 8E-6 kg/s/cell @ 944K Air Delivery: 0.25 kg/s/cell @ 944K

Output: 245 mW/cm² Tcell(ave) = 751C

Full 3-D
Temperature
dataset available
for computing
thermal stress

Topics for Microstructural Electrochemistry

- Method.
- Advantages.
- Sample simulation results.
 - Reaction zones in the anode
 - Internal reformation

Effective Property Method

- Discretize gas channels, electrodes and electrolyte into nodes with 5-25 μm thickness
- Each node has effective transport and reaction properties (gas diffusion, surface diffusion, surface area density, TPB density, etc.)
- Solve flow and transport equations using lattice Boltzmann to obtain three-dimensional distributions for
 - Gas velocity, density
 - Gas species concentrations
 - Adsorbed species, solid diffusing species (oxygen)
 - Energy, temperature

Microstructural Electrochemistry Method

- Geometry may be generated using statistical data taken from digitized pictures of the porous material
- Properties include effective gas diffusion, surface diffusion, solid diffusion, triple phase boundary density, etc.

Effective properties may be determined using lattice Boltzmann

simulations of the discrete microstructure

Advantages

- Spatially varying electrode properties
- Parallel transport paths for oxygen (gas, surface, solid)
- Distributed reaction zones (TPB, internal reformation)
- Link cell performance to electrode microstructure

Simulation Results from Effective Property Model

Internal Reformation

Battelle

Methane is continually depleted Methane distribution Gradient is driving it to surface High diffusion into the channel And low diffusion into the anode ■Hydrogen distribution Methane is reformed upon contact with Anode surface

Topics for Start-up

- Start-up issues and challenges.
- Computational tools for start-up simulations and stack design.
- Thermal controller for rapid heating of stacks.
- Structural parametric results.
- Optimization studies
- Experimental validation of structural models.

Rapid Start-up Issues for SOFC

- Flow through stack must be "uniformly" distributed.
- Maintain thermal stresses within material set strength.
- Stack pressure drop to be small.
- Minimize time to heat stack to initiation temperature of 700 °C (within a few minutes ultimately)
- Issues necessitate survey of designs, with given material set, to discover working options ...Stack Geometry, Gas channel and manifold dimensions, flow configurations.

Transient simulations Target Structure – Basic Planar Stack Design

Manifold dimensions

Flow configuration

Transient - Rapid Start-up Thermal-Fluids Stack Model

Stack Model with Temperature Control, Modified Geometry and Boundary Conditions

- Flow channel height shortened to (1.5mm)
- User routine defined free convection BC at walls (T_e)
- User routine defined temperature control

Non-Uniform stack flow and heating.....

Would also mean non-uniform reactions and heating during steady operation.

Fix: increased outlet manifold dimension

Battelle

Prediction of Temperature Distribution and Subsequent Thermal Stresses

Temperatures from CFD model

Stresses in various Components From FEA Models

Updated Geometry or Boundary Conditions. New CFD Prediction of Flow and Temperature

Guidance for Modifications:

- Heating Method
- Flow Channels
- Manifold Dimensions

Temperature Controller

- CFD model is run with standard controller to generate temperature distribution
- FEA modeling performed using temperature distribution to determine maximum PEN
 ΔT allowed based upon strength of material
- CFD model is re-run using optimized temperature controller to meet the maximum ΔT at each average PEN temperature

Ave Pen	Pen ∆T
523	504
640	380
724	245

Optimization studies

- Controller for heat-up time optimization
- Geometrical optimization
- Optimization of mesh stiffness

Bounding (minimum) heat-up is the order of 10 minutes (heat rate of 19.6 KJ/sec and total heat input of 6.81 MJ)

Effect of Temperature Profile and Seal Compliance on Stresses in the PEN

Effect of Temperature Profile and Seal Compliance on Stresses in the PEN

Layered model results

Design	Anode stress (MPa)	Vertical Deflection (mm)
Cross flow	27.3	0.031
Co - flow	10.3	0.035
Counter flow	26.3	0.063

PEN out-of-plane deflection

Anode principal stress (Pa)

Results 3-Stack Simulations

		Anode σ 1 MPa	SS _σ eqv MPa
1% (A)	Bottom	24	370
	Тор	22	547
0.001% (D)	Bottom	49.6	313
	Тор	32.4	609
0.001% (E)	Bottom	56.4	410
Simple BC	Top	33.8	585
0.001% (F)	Bottom	52.5	326
10% glass	Тор	28.9	617

- ■Will the stack survive thermal stresses? (based on stress/strength failure criteria)
- ■What is the effect of out of plane stiffness?
- ■Will softer glass reduce stresses?
- ■How do the B.C.'s change stress profiles?

Experimental Validation of Structural Modeling

Rapid (<30 sec.) heating of ceramic PEN to 700°C with 20 KW infrared heaters. Temperature profile controlled with parabolic shaped mask

Infrared image of temperature profile

Finite element modeling of test

Applicability to SOFC Commercialization

- Modeling tools developed by PNNL for design, optimization and operation of SOFC materials, stacks and systems.
- Engineering insights and guidance regarding SOFC materials, stacks and systems.

Future Activities

- Enhancement of continuum level electrochemistry models for full stacks and steady state parametric studies.
- Micro-structural level electrochemistry for microstructural optimization and simulating internal reformation
- Predictive models for strength and life
- Material properties and model correlation/validation.