Thermochemically Stable Sealing Materials for Solid Oxide Fuel Cells

Signo T. Reis, Teng Zhang, and Richard K. Brow

Materials Science & Engineering Department The Graduate Center for Materials Research
University of Missouri-Rolla
Rolla, MO 65409

SECA Core Technology Peer Review Workshop Tampa, FL, Jan. 27-28, 2005

Designing glasses for SOFC seals is a significant challenge

Function:

- Prevent mixing of fuel/oxidant within stack
- Prevent leaking of fuel/oxidant from stack
- Electrically isolate cells in stack
- Provide mechanical bonding of components
 Challenges:
- Thermal expansion matches to a variety of materials
- Relatively high operational temperatures (>700°C)
 - Long lifetimes (>10000's hrs)
 - Maintain stability over range of P_{O2} , P_{H2O}
- Relatively low sealing temperatures (<900°C)
 - Avoid altering other SOFC materials

For some designs, glass-ceramics may be suitable

Promising glasses have unusual structures

"Invert Glasses": discontinuous silicate anions tiedtogether through modifying cations.

- · Greater CTF's
- More fragile viscosity characteristics
 - · 'shorter' glasses
 - More 'basic' reaction chemistries
- Metasilicates (chains): [O]/[Si]~3.0
- Polysilicates (short chains): [O]/[Si]>3.0

UMR glass-ceramics under development

- · ZnO-modified alkaline earth invert silicates, mixed CaO, SrO, ZnO (45-55 mole%), BaO-free
 - •[0]/[Si]>3.3, SiO₂<45 mole%
 - · Minor oxides include Al₂O₃, B₂O₃, TiO₂

Property design targets: Seal/crystallized <850°C

CTE-match to YSZ

Thermomechanically stable at >700°C

Thermochemically stable in oxidizing/reducing conditions

Representative crystalline phases in the UMR glass-ceramics

- Pyrosilicates
 - CaSrAl₂SiO₇, Ca₂ZnSi₂O₇
- Orthosilicates
 - Sr₂SiO₄, Zn₂SiO₄
- Composition is most important parameter for final phase distribution.

DTA provides information about sealing glasses

Glass stability in wet forming gas; 750°C

R.K. Brow, Univ. Missouri-Rolla, brow@umr.edu

days

Test seals have been prepared with SOFC coupon materials

- Glass pastes
 - Glass powders, ~45mm & <5mm
 - PVB binders
 - Binder burn out: 500°C/air; glass sealed: 850°C/argon
 - · Glass thickness: 20-400mm
- Interconnect alloy: E-bright
 - · Cr-ferritic steel (26% Cr)
 - CTE ~ 11.7 ppm/°C
- •YSZ coupons $(8\%Y_2O_3)$
 - · CTE ~ 10 ppm/°C

"As sealed" Glass 25 paste with YSZ and E-bright substrates (850°C/4hrs, Ar).

R.K. Brow, Univ. Missouri-Rolla, brow@umr.edu

Cr-rich interfacial reaction products are found at the glass/E-bright interfaces

SOFC Seal Summary

- SOFC seals offer an interesting materials challenge
- 'Invert' polysilicate compositions have promising combinations of properties
 - 'Invert' glass-ceramics can be designed with thermal and chemical properties desired for some SOFC seal designs.
 - Thermo-chemical and thermo-mechanical stabilities are critical for long-term applications.
- Future Work
 - Performance in operating cells and stacks (UMR, UConn)
 - Development of composite sealing materials (UMR, UCincy)
 - Full characterization of glass/metal interfaces (UMR, Sandia)

Acknowledgements:

The authors thank their colleagues for useful discussion and experimental support: UMR: Piotr Jasinski, Xiao-Dong Zhou, Harlan Anderson, Clarissa Wisner

The financial support of the Department of Energy/SECA (project NT42221) is gratefully acknowledged.
R.K. Brow, Univ. Missouri-Rolla, brow@umr.edu