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•  Develop reliable, cost-effective seals 
based on glass-filled composites

•  Determine performance-limiting features of 
sealing methods

•  Optimize seal properties

•  Determine seal degradation mechanisms 
and predict useful seal lifetimes

Our overall objective is to develop practical joining
techniques for SOFCs
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Glass composites allow us to design for specific
seal properties
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Sealing requires optimization of mutually incompatible
material properties

Design of glass-ceramic
composites optimizes required
material properties
  - Moderate fluidity for adhesion &

self healing
  - Reduced crystallization for 

control of CTE
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Composite seals can be engineered to provide a wide
range of chemical and mechanical properties

•  Composite approach allows glass and filler to be optimized
independently

•  Glass phase is above its Tg at SOFC operating temperature
to reduce thermal and mechanical strains

•  Control viscosity, CTE, etc. by adding unreactive powder

•  Volume fraction of glass phase can be reduced to minimum
for seal
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Seal wetting and flow properties can be controlled by the
composite glass-powder ratio

Glass 14A - YSZ powder mixtures heated on Ebrite stainless steel for 10 min at 850°C
Percentages indicate the volume of YSZ powder in composite
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 Specific FY05 project milestones

Q1:  Test glasses for reactivity with anode materials

Q2:  Test glasses and glass composites for reactivity with
interconnect; identify any Cr dissolution and migration

Q3:  Determine effect of interconnect preoxidization on
wetting and adhesion

Q4:  Determine glass-composite stability at operating
temperature for interconnect-anode seals
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Varied glass compositions provide a wide range
of flow properties on stainless steel alloys

Unoxidized Ebrite and 410 SS
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Properties of glass-powder composites were measured
using a high-temperature furnace with in situ video

capabilities (TOMMI)

 Non-contact, optical
measurements

 CTE measurement

 Contact angle
measurement

 Viscosity determination

 Loaded sintering

 Thermogravimetric
analysis

 Oxidation studies
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1) Newtonian flow
2) Constant shear rate

throughout specimen

η=viscosity
σ=stress
A=area

ε=strain rate
•
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ε=strain
hi=instantaneous height
ho=oringinal height

ε=strain rate
Δε=change in strain
Δt=change in time

•

Measured uniaxial viscosity is related to the
composite shear viscosity
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Glass deformation

glass
base

punch

As predicted, composite viscosity increases
with increasing volume fraction of powder filler
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Studies of glass/anode reactivity show that glass is
compatible with pure Ni and with anode compositions
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Cr is the most reactive species in
interconnect materials

 Several glass compositions were blended with Cr

powder and heated to 750°C and 850°C for 3 hours

 Large Cr surface area enhances potential for Cr

dissolution in molten glass

 Pure Cr instead of bulk stainless steel alloy increases

Cr concentration available for dissolution

 Thus, an accelerated test for Cr dissolution into glass

from interconnect
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Cr

Glass 48a
Ca, La, Al, B, O

No Cr

After 3 hours at 750°C  no dissolution from Cr
particles is observed in sealing glasses

Cr Glass 10
Ca, La, Ba, Al, B, O

No Cr
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At 850°C a Cr/O layer forms around the Cr, and
Cr can be found in the glass

Ca, Mg, Ba, Al, B, O

High Cr

Ca, Mg, Ba, Al, B, O

High Cr
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Electron microprobe analysis shows formation of
Cr2O3 layer at glass-metal interface
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850oC
5 hrs.
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Electron microprobe analysis shows that exposure
to higher temperatures promotes Fe migration into

glass and segregation of B/Mg phases

•14A/410 SS

•Heat treatment:  850oC
5 hrs.

•Complex microstructure
with various phases

•Cr detected throughout
the interfacial area and in
nearby glass

•Phase segregation with
Fe-rich boundaries
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Time at temperature of 850°C and above should be
limited for seals of La-Al borate glasses to

interconnects

•  Cr dissolution appears not to be an issue at 750°C

•  Cr can be observed in the glass matrix after long
times at 850°C, but not at 750°C

•  Extended time at 850°C can cause Cr2O3 formation
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• Oxidation reaction is very well understood in
300 series stainless steels

• Preoxidation of 304 stainless steel improves
wetting and adhesion

Preoxidation is commonly used for 304 SS-glass
interconnect seals. Might it also be useful for

processing SOFC seals?
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TEM/Spectrum imaging of pre-oxidized samples
shows differences in interface structure for different

heats of 304 stainless steels

K674

K398

alloy

alloy

Good glass-sealing
behavior

Poor glass-sealing
behavior

This system
used for
electrical

interconnects



Sandia National Labs - Advanced Materials Laboratory

Glass sealed at 850°C in air adhered better to
preoxidized 410 SS than to the as-received form

As Received 410SS

Pre-oxidized 410SS

Glass didn’t adhere

Glass adhered

Preoxidation at 1050°C in Ar/1000 ppm O2
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Experiments from TOMMI furnace show effect of
preoxidation of Crofer and 410 SS on wetting by

sealing glasses
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Interface stresses can be calculated using
Tomishenko’s elastic analysis equations

•The compressive stress in the reaction zone (σr) and the tensile stress in the metal
(σm) can be calculated using the radius of curvature (R), Young’s modulus (E), and the
seal thickness (t).

•Combined mechanical and thermal strains in the reaction zone equal those in the
metal:

εr + αrΔT = εm + αmΔT

•CTE of reaction zone producing curvature of the strip seal

(αm - αr)ΔT = εr - εm
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Strip seal experiments show real time strains from
glass-stainless steel CTE mismatch

T = 800°C (sealing temp) T = 580°C (Tg)

T = 25°C 

Glass 14a on 410 stainless steel, cooled at 20°C/min

410ss Glass 14a
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Sample seals have been made with both pure
glass and glass/ceramic composites

YSZ/Ebrite

Pure glass sealant

Ebrite/Ebrite

Pure glass sealant

YSZ/Ebrite

Glass/ceramic composite sealant

Ebrite/Ebrite

Glass/ceramic composite sealant
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Cracked glass and composite seals can be
bonded on reheating

Sealing 
glass

Ebrite

Reheated to 
sealing temperature

850°C for 10 min.

Sealing 
glass Ebrite
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FY06 Objectives

•  Analyzing interfacial reactions

•  Thermal cycling and long time exposure at service

temperature (environmental exposure)

•  Mechanical testing of composite seal materials

•  Mechanical testing of seal adhesion on YSZ

substrates

•  Development of seals on alloys such as E-brite
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Summary and Conclusions

•  Glass and crystalline compositions can be
optimized independently

•  Glass composites allow a wide range of properties
and seal designs

•  Composite approach seems very promising for
sealing SOFCs

•  We are ready to adapt this approach to specific
vertical team needs


