Metal Interconnect Development

Ceramatec, Inc.
Sponsored in part by

U.S. DOE

SBIR Grant Number DE-FG03-00ER82969
SECA CTP Award Number DE-FC26-02NT41569
Challenges

<table>
<thead>
<tr>
<th>Critical Issue</th>
<th>Approaches tried</th>
<th>Hurdles for success</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Thermal expansion match</td>
<td>Use of 95Cr-5Fe (Plansee alloy)</td>
<td>Evaporation of Cr is the major source of degradation</td>
</tr>
<tr>
<td>2. Oxidation resistance in air, maintaining conductive scale</td>
<td>Cr containing alloys which form conductive Cr$_2$O$_3$ scale</td>
<td>Cr evaporation still remains, scale growth continues to occur causing high resistance contribution</td>
</tr>
<tr>
<td>3. Conductive scale in fuel atmosphere</td>
<td>Ni coating or cladding</td>
<td>Ni adhesion during thermal cycles</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ni CTE</td>
</tr>
<tr>
<td>4. Reactivity with electrode materials - deactivation of electrodes</td>
<td>Surface coating, for example using perovskites (LSM, LSCo, LCr)</td>
<td>Achieving dense layers, spall resistance to thermal cycles</td>
</tr>
<tr>
<td>5. Compatibility with anode and cathode environments</td>
<td>Monolithic alloy with surface treatments</td>
<td>Engineering demonstration</td>
</tr>
<tr>
<td></td>
<td>Layered structure engineered for appropriate atmospheres</td>
<td>Engineering demonstration</td>
</tr>
</tbody>
</table>
Challenges - continued

<table>
<thead>
<tr>
<th>Critical Issue</th>
<th>Approaches tried</th>
<th>Hurdles for success</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Uniformity in contact</td>
<td>Machining and/or lapping to achieve required flatness</td>
<td>Fabrication cost?</td>
</tr>
<tr>
<td></td>
<td>Use of corrugated layers</td>
<td>Selection of appropriate layer materials</td>
</tr>
<tr>
<td>8. Thermal cycle capability</td>
<td>Limited information</td>
<td>Scale spalling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CTE mismatch</td>
</tr>
<tr>
<td>9. Cost</td>
<td>Use of commercial alloy</td>
<td>Must meet all other requirements</td>
</tr>
</tbody>
</table>
Metal Interconnects

- Program Goal
 - Demonstrate stable stack performance using metal interconnects

- Phase I Objective
 - Surface treatment of commercial alloys
 - Conductive, adherent scale with long term and thermal cycle stability
 - Verification in air and fuel environments
Technical Approach

Material Selection

- Oxidation Characterization
 - Test Procedure (Static)
 - Bare vs. Pre-oxidized
 - Microscopy
 - Weight Gain

- Scale Resistance
 - Test Set-up (Symmetric)
 - Contact layer
 - Stability
 - Microscopy

- "Electrochemical" Environment Test
 - Half-cell + interconnects
 - Resistance
 - Stability
 - Thermal Cycle Capability
Oxidation in air

Material Selection

Oxidation Characterization

Test Procedure (Static)

Bare vs. Pre-oxidized

Microscopy

Weight Gain

- Static test selected
 - Two temperatures
 - 850 and 900°C
 - Sample cooled and weighed periodically
Oxide Scale Growth - Static Test

- Temperatures selected to increase oxidation rates
- Oxide scale growth rate is a function of Pre-Oxidation Treatment (POT)
 - Significant reduction in oxide scale growth by the choice of pre-oxidation technique
Oxidation Characterization

Static Test: Scale Thickness: 200 hours in air at 900°C

- Bare Metal
 - 7 microns

- POT 1
 - 5 microns

- POT 2
 - 5 microns

- POT 3
 - 3 microns

- Scale growth and interface as a function of Pre-Oxidation Treatment
Oxide Scale Resistance

• Symmetric geometry
• Resistance evaluated
 ○ Function of time and contact layer material
Test Arrangement

- Symmetric couple used to measure conductivity through the conductive interface layer and the oxide scale in air
Scale Resistance in Air

- 10 to 60 milli-ohm.cm\(^2\) in air at 850°C
 - Resistance is a function of perovskite material
Microstructure of scale/interface coating

- Interface microstructure depends on both pre-oxidation and the perovskite material
“Electrochemical” Test

- Symmetric Cell
 - Cathode Half-cell
 - Pre-Ox Metal
Interconnect Schematic

- Components
 - Separator plate
 - Flow field (corrugations)
Stability against Cathode - Test Design

- Cathode half-cell (cathode/electrolyte/cathode) sandwiched between Pre-Ox interconnects (separator/corrugation)

500 mA/cm²
Stability against Cathode - Initial Results

- Couple at a constant current of 500 mA/cm²
- Initial value stabilized at 60 - 80 milli-ohm.cm²
- Resistance increased with thermal cycles
- Cause of change?
 - Effect of test geometry?
 - Scale growth?
 - Scale delamination?
 - Poor perovskite adhesion?
Summary

• Pre-oxidation of commercial alloy reduces high temperature corrosion rate
• Low resistance values of 10 to 50 ohm.cm² in air at 850°C can be achieved
• Thermal cycle properties need further investigation
Planned Activities

- Additional long-term/thermal cycle tests with cathode half-cells to deduce mechanism of degradation
- Thermal spray of perovskite to improve adhesion/thermal cycle stability
- Dual atmosphere test?