SECA Core Technology Program

NETL Fuel Cell Modeling Program: Development, Validation, and Application

Presenter: William Rogers

November 16, 2001

Goals and Objectives

- Develop robust and accurate modeling tools capable of detailed fuel cell and stack performance analysis
- Develop SOFC test facility for testing of small-scale cells and stacks
 - use well-characterized test specimens
 - produce detailed data for model validation
- Extensive validation of SOFC models
 - data from open literature
 - data from NETL test facility
 - data from SECA partners
- Apply these new tools toward development of new/novel fuel cell concepts that can achieve the SECA goals
 - support SECA developers

Technical Approach

- Use commercial CFD code as underlying platform for detailed fuel cell model
- FLUENT code is parallel, unstructured mesh, with wellvalidated models for fluid flow, heat transfer, species transport

NETL SOFC Model Capabilities

- Electrochemical SOFC submodel
 - H₂ and CO Electrochemistry
- Electrical field submodel to calculate electrical potential field in conducting regions
 - Ohmic heat generation
 - Current Flow
- Species diffusion in flow channels and in porous media in development
- Water-Gas Shift Reaction
- Parallel Code
- Couple model data to ANSYS FEA code

Planned Capabilities and Validation

- Stack Model
- Internal Reforming
- Contact Resistances
 - current collector-electrode
 - electrode-electrolyte
 - current collector-interconnect

Model Validation

- Data from open literature
- Data from NETL testing facilities
- Data from SECA partners

NETL SOFC Model Overview

Local Species Concentration Local Temperature

Local Electrical Potential

FLUENT CFD

Species

Momentum

Energy

Electrical Potential Field

Species Source/Sink
Heat Fluxes
Electrical Potential B.C.s

SOFC Model

Nernst Voltage

Losses at Electrolyte

Current
Distribution on
Electrolyte

Electrical Potential B.C.s

NETL SOFC Model Overview

- The electrolyte is always assumed thin for electrochemical modeling purposes
 - It can be represented by a finite thickness region in the FLUENT simulation
- The electrodes can be resolved as porous media zones to capture concentration gradients directly
 - Fickian-based overpotential models are also included to allow the treatment of thin electrodes
- Models for activation losses are also available for each electrode
 - account for chemical kinetics

Overpotential Corrections to Nernst

$$E_{cor} = \Delta V = N - \eta_R - \eta_{CC} - \eta_{CA} - \eta_{AC} - \eta_{AA}$$

Ohmic Losses:

$$\eta_R = R \cdot i$$

Diffusion Losses:

$$\eta_C = -\frac{R_u T}{nF} \ln(1 - i/i_L)$$

Chemical Kinetics:
$$i = i_o \left[\exp \left(\frac{\alpha \eta_A F}{R_u T} \right) - \exp \left(\frac{(1-\alpha)\eta_A F}{R_u T} \right) \right]$$

NETL SOFC Model Non-Proprietary Examples

- Tube Geometry
- Crossflow Monolith
- Single Channel Monolith

Tubular Cell Example

- Current Density = 1850 A/m²
- 11 Amp
- Support Tube Geometry
- Fuel 55.7% vol. H₂, 10.8% vol. CO, 5.8%vol. CO₂ and 27.7% vol. H₂O (80% util.)
- Oxidizer Air (25% util.)

Tubular SOFC Geometry

Cross-Flow Monolith Geometry

- Current Density = 3000 A/m²
- 2.7 amp
- 30 cm x 30 cm
- Fuel 97% vol. H₂ and 3% vol. H₂O (80% util.)
- Oxidizer Air (30% util.)

Co-Flow Monolith Channel

- Current Density = 3000 A/m²
- 0.27 amp
- 30 cm x 3mm
- Fuel 97% vol. H₂ and 3% vol. H₂O (80% util.)
- Oxidizer Air (30% util.)
- Couple with ANSYS

Displaced Shape

s 6.0 25 2001

:28

Tref = 1400 K -> Deformed Shape + Undeformed Edges

Displacement

ANSYS 6.0 SEP 25 2001 13:46:51

Stresses

ANSYS 6.0

Tref = 1400 K -> Von Mises (Equivalent) Stress | Pa)

SOFC Cell and Small Stack Testing for Model Validation

Technical Approach

- Collaborate with cell/stack developers that can provide 'genericcustomized' test specimens
- Partner with labs capable of property analysis
 - Single & composite material analysis
 - Porous media characterization
 - Post test analysis (ensure consistent and proper operation of specimens under test)
- Work closely with model developers to ensure data relevancy for model validation purposes
- Redundant testing

Test Facility

Four SOFC test stands are being installed

Specimen Test Fixtures

- Model validation using different flow conditions:
 - -Stagnant environment
- -Convective environment

Specimen Test Fixtures

- NETL Computing Clusters
 - 300 CPU + system all with FLUENT License
- Collaboration with Pittsburgh Supercomputer Center
 - CPU time and consulting
- Simulating Proprietary Geometry for SECA Developer
- Discussions with leading SOFC developers
 - Support NETL testing for model validation
- Collaboration with ANSYS and Mallet Technologies
 - "Multiphysics" models use CFD data in FEM code for stress analysis

 NETL/Fluent Incorporated CRADA for fuel cell model development and validation (11/14/01)

Fluent plans to offer commercial versions of SOFC and PEMFC models in 2nd Quarter 2002

SECA Prototype Test Facility

- Periodically assess progress in meeting SECA Fuel Cell Program Goals
- Independently test each prototype system at NETL under well controlled and monitored conditions
- Report technical performance to SECA managers

Experience with PEMFC testing

- PEMFC test facility at NETL
- Provide data for validation of PEMFC model (NETL/Fluent CRADA)

Other Collaborations

- PNNL doing material property analyses and compilations
- PNNL working with ORNL to examine lifetime issues
- LBL performing novel low cost cell designs (non-anode supported technology)
- ANL performing cathode optimization and property analyses

