Flexible Mechanical Seal Concepts
July 9, 2003

• Reviewed two primary concepts:
 – High temperature flexible shaped seal using compressive loads for sealability
 • Conventional Sealing approach but “Honey I Shrunk the Seal!!”
 – Mechanical Bellows + Glass Seal
 • Novel concept that doesn’t require significant preloading to effect seal. Glass on sealing surfaces seals asperities reducing demands on surface finishes
High temperature flexible-shaped seal using compressive loads for sealability

Current Status

• Superalloy materials (e.g. Waspalloy) available to 800deg C for short life (3000 Hrs). No concepts proven for 10,000 hrs.
• Superalloy materials have finite grain sizes (~1 mils). This may be a problem for making very small, thin-walled seals.
• Requires high quality surface finish of seal and adjacent members (cost).
• Limited ceramic seals made in flexible (e.g. bellows) configuration.
 – Ref. Cerametec
High temperature flexible-shaped seal using compressive loads for sealability

Development Needs

• Creep resistant materials (metal, ceramic) for long life (10,000+ hrs.)
• Geometries, cross-sectional shapes for good resiliency (e.g. bellows, “C-shape”, E-, W-, V, other)
• Designs that package in the small space available
• Need new mfg techniques reduce size to 200 micron (e.g. 0.008 in) height.
• System design that allow for sealing groove.
• Metallic System: Electrical isolation needs to be addressed.
• Techniques for providing high quality surface finish of seal and adjacent members (cost).
High temperature flexible-shaped seal using compressive loads for sealability

Development Approach:
Pursue development programs that address:

- **Metals:**
 - Novel mfg techniques for making small flexible structures. (thin (<0.001 in) thick. Spray, CVD, other
 - Creep resistant, oxidation resistant alloys

- **Ceramics:**
 - Novel mfg techniques for making small flexible structures.
 - Fracture tough, ceramics that can accommodate thermal growth. Creep resistant materials for long life for 10,000+ hrs.

- Assess high temperature lubricants to allow relative movements

- Perform analyses of candidate seal geometries/materials under expected loads, deflections.

- Fabricate and test promising seals using button cells approach. Assess voltage change vs. cycling at temperature.
Mechanical Bellows + Glass Seal

Current Status

• Removing load through seal reduces the demands on material strength
• Corners for “picture-frame” pose significant problems
 – Problem dealing with “corner outward diagonal growth”
 – Stiffness
 – Possible Soln: Fabricate cells and seals in circular/axisymmetric configurations. Analyses still required to determine feasibility of concept.
• Glass/metal seals have been produced (reducing risk)
• High temperature superalloy materials have finite grain sizes (~1 mils). This may be a problem for making very thin walled seals.
• Eliminates need for high quality surface finish of seal and adjacent members (cost).
• Metal alloys are available that can sustain the 800degC temperatures.
Mechanical Bellows + Glass Seal

Development Needs

- Geometries, cross-sectional shapes for good resiliency (e.g. bellows, C, W, V, other)
- Investigate issues associated with circular vs. rectangular picture frame seals.
- Designs that package in the small space available
- Need new mfg techniques reduce size to 200 micron (e.g. 0.008 in) height.
- Glasses with the appropriate properties: wetability, sealability, cycle capability, etc.
Mechanical Bellows + Glass Seal

Development Approach:
Pursue development programs that address:

• Metals:
 – Novel mfg techniques for making small flexible structures. (thin (<0.001 in) thick. Spray, CVD, MEMS other
 – Oxidation resistant alloys
• Ceramics (if there is merit):
 – Novel mfg techniques for making small flexible structures.
 – Fracture tough, ceramics that can accommodate thermal growth.

• Perform analyses of candidate seal geometries/materials under expected loads, deflections.

• Fabricate and test promising seals using button cells approach. Assess voltage change vs. cycling at temperature.