FUNDAMENTAL STUDIES OF THE DURABILITY OF MATERIALS FOR INTERCONNECTS IN SOLID OXIDE FUEL CELLS

AGREEMENT NO. DE-FC26-02NT41578 (Start Date September 30, 2002)

J. Hammer, S. Laney, W. Jackson, F. Pettit, & G. Meier Department of Materials Science & Engineering University of Pittsburgh

N. Dhanaraj & J. Beuth
Department of Mechanical Engineering
Carnegie Mellon University

SECA Annual Workshop and Core Technology Program Peer Review

January 28, 2005

PROJECT STRUCTURE

<u>NETL</u>

Dr. Lane Wilson Technical Monitor

Dr. Chris Johnson NETL Fellowship Mentor

<u>University of Pittsburgh(MSE)</u>

Prof. Frederick. S. Pettit Co-principal Investigator

Prof. Gerald. H. Meier Co-principal Investigator

Carnegie Mellon University(ME)

Prof. Jack L. Beuth Co-principal Investigator

ATI Allegheny Ludlum

Dr. James Rakowski

West Virginia University(ME)

Prof. Bruce Kang

Students

University of Pittsburgh

- Ms. Julie Hammer Graduate Student
- Mr. Wesley Jackson Graduate Student
- Mr. Scot Laney NETL Partnership Fellow

Carnegie Mellon University

Ms. Nandhini Dhanaraj Graduate Student

Completed

•	Ms. Mary Birch	B. S. Materials Science
---	----------------	-------------------------

- Ms. Kelly Coyne
 B.S. Engineering Phys.
- Ms. Carrie Davis
 B. S. Materials Science
- Mr. Wesley Jackson
 B. S. Materials Science

Diagram Relating 3 Interconnect Failure Mechanisms

- Three Mechanisms: Scale Thickening, Spallation, Evaporation
 - Relate Mass Change to an Estimated ASR: Mass Changes in the Pink Region have Excessive ASR due to Thick Chromia Scale
 - Use Fracture Mechanics to Get G_c for No Debonding at this Limit: Compare this Value to G_c Measured by Fracture Testing
 - For no Debonding, Difference Between Est. Parabolic Growth Curve and Measured Curve (Yellow Region) Quantifies Amount of Scale Evaporation

PROGRAM FOCUS

TASK I: Mechanism-Based Evaluation Procedures (Chromia-Forming Alloys)

- Growth Rates of Chromia Scales on Cr and Ferritic Alloys
- Adhesion of Chromia Scales
- Oxide Evaporation
- Complex Atmosphere Testing

Note: An important theme which cuts across Tasks I and II is the establishment of accelerated testing protocols.

PROGRAM FOCUS; TASK II: FUNDAMENTAL ASPECTS OF THERMOMECHANICAL BEHAVIOR

- XRD Stress Measurements (Chromia Films)
- Indentation Testing of Interface Adhesion
- Indentation Test Fracture Mechanics Analysis

Note: An important theme which cuts across Tasks I and II is the establishment of accelerated testing protocols.

PROGRAM FOCUS TASK III: Alternative Material Choices

This Task involves theoretical analysis of possible alternative metallic interconnect schemes including:

- Ni and dispersion-strengthened Ni
- Low CTE Alloys Based on Fe-Ni (Invar)
- Coatings to Suppress Evaporation
- Incorporation of High Conductivity Paths (e.g. Ag)

The most promising systems are being evaluated experimentally with regard to durability and oxide conductivity

Alloy Compositions

Alloy	Fe	Cr	C	Mn	Si	Ni	Mo	Ti	Al	Zr	P	S	La+Ce
Crofer	bal.	22.0	0.005	0.50				0.08			0.016	0.002	0.06 La
E-brite	bal.	26.0	0.001	0.01	0.025		1.0				0.020	0.020	
26Cr Ferritic	bal.	26.0		~ 1.0	~ 1.0		1.0						
AL453	bal.	22.0	0.030	0.30	0.300			0.02	0.60		0.020	0.030	0.10
ZMG232	bal.	22.0	0.020	0.50	0.400	0.26			0.21	0.22			0.04 La

Exposure Conditions

T = 700°C, 800°C, 900°C One-Hour Cycles

Atmospheres
Dry Air (SCG)
Air + 0.1 atm H_2O Ar/ H_2/H_2O (SAG)

($p_{O2} = 10^{-20}$ atm at 700°C and 10^{-17} atm at 900°C)

Previous Results

- Oxidation in wet air produced the most severe degradation at 900°C (accelerated chromia growth on Crofer and AL453 and increased spallation from 26 Cr Ferritic).
- ASR correlated with oxide thickness.
- Thin specimens deform under oxidation-induced stresses.
- Sigma phase formed in 26 Cr Ferritic at 700°C.

Focus of Presentation

- Purity in Ferritic Alloys
- Chromia Volatilization Problem

Effects of Alloy Purity

Oxidation, ASR, and Metallurgical Stability are all influenced by minor impurities.

Simulated Anode Gas (Ar-4%H₂, H₂O) Exposures – 700°C

Time vs. Mass Change / Area for Crofer, 26Cr Ferritic, and AL453 (700°C, Ar/H₂/H₂0)

Simulated Anode Gas (Ar-4%H₂, H₂O) Exposures – 700°C

Sigma Phase in 26Cr Ferritic at 700°C

Current experiments show σ in 26Cr Ferritic after 300 h, none in E-BRITE

Wet Air (0.1 atm H₂O) Exposures – 800°C (JS-3, old Crofer, new Crofer)

Time vs. Mass Change / Area (800°C, wet air)

Wet Air (0.1 atm H₂O) Exposures – 800°C (JS-3, old Crofer, new Crofer)

Solutions to the Evaporation Problem

- Overgrowth of Low-Volatility Oxide
- Use of Coatings
- Development of Cr-free Interconnects.

Oxide Electrical Properties

Oxide ρ (ohm cm) in air

SiO₂ 7 X 10⁶ (600°C)

 Al_2O_3 5 X 108 (700°C)

 Cr_2O_3 1 X 10² (800°C)

NiO 5 (900°C)

CoO 1 (950°C)

3 X 10² (1000°C)

TiO₂

^{*} Note: $\rho_{TiO2} = 5 \times 10^{-1}$ ohm cm at $p_{O2} = 10^{-16}$ atm

Chromia Evaporation

Crofer

MnCr₂O₄

$$Cr_2O_3(s) + \frac{3}{2}O_2(g) = 2CrO_3(g)$$

 $p_{CrO_3} = K^{\frac{1}{2}}a_{cr_2O_3}^{\frac{1}{2}}p_{O_2}^{\frac{3}{4}}$

$$MnO(s) + Cr_2O_3(s) = MnCr_2O_4(s)$$

$$\Delta G_{1100K}^o \approx -89KJ / mole$$

Chromia Saturation

$$a_{Cr_2O_3}=1$$

$$a_{Cr_2O_3} = 1$$
 $p_{CrO_3} = 4x10^{-11}atm$

MnO Saturation

$$a_{Cr_2O_3} = 6x10^{-5}$$
 $p_{CrO_3} = 3x10^{-13} atm$

LaCrO₃ (Activity data from Hilpert et al)

$$a_{Cr_2O_3} = 10^{-7}$$
 $p_{CrO_3} = 1x10^{-14} atm$

Partial pressures of CrO₃ in Equilibrium with Cr₂O₃, MnO-saturated MnCr₂O₄, and LaCrO₃

Note: similar reductions would be achieved in the pressure of CrO₂(OH)₂

Oxide Evaporation from Ni-Cr Alloys

900°C TGA WET TESTS

IN 738 at 900°C in wet air (0.1 atm) isothermal-168 hr

Vapor Pressures – 1100 K

Metal	p _M (atm)	p _{O2} -M/MO (atm)	Oxide – p _{Oxide} (atm)
Cr	7 X10 ⁻¹²	1 X 10 ⁻²⁷	CrO ₃ - 4 X 10 ⁻¹¹
Fe	1 X 10 ⁻¹²	9 X 10 ⁻²⁰	FeO - 1 X 10 ⁻¹⁶
Ni	2 X 10 ⁻¹³	4 X 10 ⁻¹⁴	NiO - 1 X 10 ⁻¹⁶
Cu	6 X10 ⁻¹⁰	4 X 10 ⁻⁹	CuO - 5 X10 ⁻¹³
Ti	1 X 10 ⁻¹⁵	4 X 10 ⁻³⁶	TiO ₂ - 1 X 10 ⁻²⁰

Collaborative work with Allegheny Ludlum is directed at producing the "TiO₂ Effect" in a ferritic alloy.

Various Thicknesses of LaCrO₃ Based Coatings

2hrs Ar-H₂ 800°C

Indentation of Exposed Chromite-Coated Specimens

- La_{0.8}Sr_{0.2}CrO₃ on E-BRITE (PNNL) and LaCrO₃ on SS 446 (Drexel/NETL)
 Exposed in Dry Air, 100 Hrs, 900 ℃
- Debonding More Extensive for La_{0.8}Sr_{0.2}CrO₃ and Now Occurs for LaCrO₃
- Chromia Scale has Formed Under Both Coatings, Debonding at Chromia/Metal Interface
- Coatings Seem to Reduce Scale Growth Rate But Increase Debonding;

As Processed:

Exposed 100hr 900°C:

Behavior of nickel in a fuel cell environment?

•NiO will form on cathode side, not anode side

Comparison of Ni with Chromia forming alloys

- NiO evaporation is extremely low
- NiO grows faster
- Conductivity dominated by defects
- Conductivity is p_{O_2} dependent

- Contamination from CrO₃ evaporation has produced deleterious effects
- The conductivity of Cr₂O₃ does not have a strong dependence on p_{O2}

Improving the properties of nickel in a fuel cell environment

- Reduce growth rate
 - Coating with reactive element, e.g. Sr, Ce, La (NiO g.b.s)
 - Alloying, e.g. Cu (lattice transport by Ni vacancies)
- Increase conductivity
 - Doping the scale, e.g. Cu (increase h* conc.)
- High Conductivity via
 - Ni mesh/silver system
 - Silver studs

TGA 800°C

TGA 800°C dry air

Dual Atmosphere Apparatus

Results-E-Brite-Dry Air

Results-E-Brite Dual Atmosphere Apparatus- Air side

Dual Atmosphere Experimental Apparatus

600 hours 800°C

Air/Air

400 Hours 800°C

600 Hours 800°C

Oxygen and Hydrogen Concentration Profiles

Future Work

- Ferritic Alloys (collaboration with A-L)
 Prepare high-purity alloys
 Achieve evaporation suppression with Ti.
- Coatings to Suppress Evaporation

```
Crack Sealing

Al from vapor phase

Al from liquid phase

Al<sub>2</sub>O<sub>3</sub> and La<sub>2</sub>O<sub>3</sub> from liquid precursors (Prof. C. Levi – UCSB)
```

Cyclic Thermal Exposures

Optimizing Ni Interconnects

```
Doping
Alloying
Use of Ag Conduction Paths
```

Compositions of Sigma Phase and Ferrite in Affected Zone

	Exposure	Composition of Sigma Phase				Composition of Ferrite in Affected Zone			
Atmosphere	Time (hrs)	wt% Fe	wt% Cr	wt% Mo	wt% Si	wt% Fe	wt% Cr	wt% Mo	wt% Si
Dry Air	1019	59.94	35.06	4.00	1.00	74.69	23.41	1.08	0.83
Dry Air	2000	57.71	35.87	4.82	1.61	70.59	26.05	1.95	1.42
Wet Air	1017	61.15	34.25	3.34	1.27	76.07	21.99	0.98	0.97
SAG	1023	60.43	34.79	3.83	0.96	74.54	23.35	1.24	0.88
SAG	2000	62.51	32.97	3.32	1.21	76.25	21.85	0.96	0.94
Average - Dry Air		58.83	35.46	4.41	1.31	72.64	24.73	1.51	1.12
Average - Wet Air		61.15	34.25	3.34	1.27	76.07	21.99	0.98	0.97
Average - SAG		61.47	33.88	3.57	1.08	75.39	22.60	1.10	0.91
Total Average		60.35	34.59	3.86	1.21	74.43	23.33	1.24	1.01

Simulated Anode Gas (Ar-4%H₂, H₂O) Exposures – 900°C

Time vs. Mass Change / Area for Crofer, 26Cr Ferritic, and AL453 Samples (900°C, Ar/H₂/H₂0)

Simulated Anode Gas (Ar-4%H₂, H₂O) Exposures – 900°C

Comparison of Crofer at Different Temperatures and Atmospheres

Time vs. Mass Change / Area for Crofer at Different Temperatures and Atmospheres

Electrical Conduction of NiO

- E_g=4.2ev, extrinsic behavior
- Ni_{1-x}O ,Ni²⁺ → Ni³⁺ to preserve charge neutrality
- Ni³⁺ provide electron holes, the dominant electrical carrier
- The greater the non-stoichiometry, the greater the conductivity.

Results- Crofer Dry Air Sample

Chromia Layer 1µm thick

Results-Crofer Dual Atmosphere Apparatus- Air side

Total oxide thickness was 2µm.

Growth of NiO

- Under strong oxidizing environments NiO exists as a metal deficient oxide
- Ni vacancies are the dominate defect
- The growth of NiO is dominated by the outward transport of Ni through the oxide scale.
- The greater the non-stoichiometry, the faster the growth

Reduction of Growth Rate

- Grain boundary diffusion plays an increasingly important role in oxide growth as the temperature decrease
- Inhibit grain boundary diffusion by the addition of a reactive element
- The growth of NiO has been reduced by an order of magnitude by the coating pre-exposed Ni with Ca, Sr, or other RE
- Pulsed Laser Deposition CeO₂, SrO

Improved Conductivity

- [holes] is fixed by the oxygen partial pressure for pure NiO
- Doping
 - M³⁺ will increase [V_m], decrease[holes]
 - M⁺ ions will reduced [V_m], increase [holes]
- Ni-5wt%Cu alloy

High Conductivity Via

W.A Meulenberg, et al Journal of Materials Science 36 (2001) 3189-3195

Nickel Mesh

•Fill pores with silver

Pulsed Laser Deposition

- 5 minute deposition time
- 10Hz
- ~10 millijoule
- Total pressure 1.6x10⁻²torr

SrO Coated Ni

