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1D PSOFC Model

Inputs
Feed temperature
Current
Molar flows and
compositions
(Fuel, air)
Cell geometry
Stack size

Outputs
Temperature
Operating 
Voltage
Molar flows 
and 
compositions
(Fuel, air)
Power Output

1 nn-1 n+1 steps. . . . . . 

∆x

Variables calculated for n = 1…steps 
at each time include: temperature 
and stream flows.

Fuel cell model run in Simulink via 
an embedded Matlab function.  
Finite difference method used to 
approximate transient parameters.
Model returns position dependent 
variable values as well as outflow 
values.

Interfaces with BOPS model in 
Simulink to form complete system.
Radiation boundary applied to exit 
boundary.
Co-flow setup between fuel and air 
streams.
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Model Characteristics

Shift Equilibrium 
Calculation

Equilibrium Composition
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Inlet fuel stream is a 
reformed methane 
stream.
Each step (control 
volume) along the fuel 
cell is treated as 
having homogenous 
properties throughout.
Shift equilibrium is 
applied to each control 
volume along the fuel 
cell.
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1D Model Results
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Inlet Conditions
Air Flow
(mol/s)

Fuel Flow
(mol/s)

Air Comp
(O2, N2)

Fuel Comp
(CH4, H2O, CO, CO2, H2)

Feed temp
(K)

8.87e-4 7.76e-4 (.21, .79) (.05, .45, .2, .2, .1) 1000
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2D SOFC Model

Electrolyte region

Air flow

Fuel
flowSame input and output variables 

as 1D model.  
Model returns variable values at 
outputs as well as across entire 
fuel cell surface.
Radiation boundary applied to 
each exit stream boundary.
Cross-flow setup between fuel 
and air streams.
Includes an inactive seal area 
around active electrolyte region.
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1D vs. 2D Model Comparison
Inlet Conditions

Air Flow 
per cell
(mol/s)

Fuel Flow 
per cell
(mol/s)

Air Comp
(H2O, O2, N2)

Fuel Comp
(CH4, H2O, CO, CO2, H2)

Current 
per stack
(A/stack)

Feed temp
(K)

3.7e-4 1.81e-4 (.069, .196, .74) (0.006, .31, .07, .08, .54) 15 996

Temperature (1D Model)
Temperature (K) as a function of time (s) and position
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1D vs. 2D Model Comparison
Anode Comp Out (1D Model)

Mole fraction vs. time (s)
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1D vs. 2D Model Comparison
H2O flow rate (1D Model)

Flow rate (mol/s) as a function of time (s) and position
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1D vs. 2D Model Comparison
with Load-Transient

600 seconds of system 
simulation needs

~ 3.5 hrs for the 2 D Model~ 3.5 hrs for the 2 D Model

~ 1.5 hrs for the 1D model~ 1.5 hrs for the 1D model

2D2D

1D1D
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Adjusting Model Configurations 
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Modified SOFC 2D fuel cell 
model for operating 
configurations provided by 
PNNL:

Isothermal operating 
conditions
User inputs for stream flow 
rates, compositions, and 
temperatures provided
Single cell set-up

ASR fit to material data from 
PNNL model. 

Comparable results 
demonstrated between PNNL 
model and modified SOFC 
model.
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PES Switching Model

Issues with the model
Switching discontinuity
Stiff system with nonlinearities

DC-DC Boost DC/AC Filter

Vin

Load

DC-DC Boost DC/AC Filter

Vin

Load
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PES Average Model

Need
Simpler Configuration
Faster Computation and 
guaranteed convergence with 
fairly larger time-steps

Cons of the modeling approach
Prediction of nonlinearity and 
chaos

Comparison and significance
1.5 sec of system simulation
using

Average Model    Average Model    5 sec5 sec
Switching  Model Switching  Model 540 sec540 sec

Significant decrease in simulation 
time with appreciably high 
accuracy
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Comprehensive System Model

Modeling Issues

Bulky BOPS model in gPROMS needs 
an gO:Simulink interface for data 
transfer between Matlab/Simulink and 
gPROMS.

Integrity of data exchange between 
individual subsystems running at their 
individual pace on their own platforms

Need of order reduction of models
PSOFC : 1D vs 2D and 2D vs 3D model
PES : Switching to Average model
BOPS : Lookup table model
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Simulation Issues

Problems with Convergence
In the PSOFC model, which behaves similar to a current-controlled 
voltage source, the current information is unavailable at the start 
of the simulation (t = 0)

Infinite sampling time
The PSOFC model  by default assumes a infinite sample time and 
hence needs to be triggered at a particular rate to proceed with the 
simulation 

Simulation Time
1 sec of complete system simulation takes 1 million CPU (parallel 
processor-based Intel Xeon) seconds.  
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Resolution of Simulation Issues

SOFC Model Changes to resolve convergence at the PSOFC and PES 
interface at t = 0

Multiple sampling rates
For PES-BOPS interface to enhance simulation speed

Rate transition blocks
Ensure data integrity at multiple sampling rates

Solver algorithm
Ode23tb

Solving crude error tolerances to solve stiff differential equations with algebraic 
loops.

BOPS reduced-order polynomial fit model

BOPS comprehensive lookup table model (in progress)
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BOPS Optimum Configuration

C E

HX IV

R

Air
Tank

Mixer

HX III

Motor

Anode

CathodeH2
Tank

Mixer

Methane
Tank

Mixer

HX I

HX II

Burner

PES LOAD

BB
Motor

Boiler
Pump

Water
Tank

Note: This optimal configuration was 
synthesized from a super-configuration
initially developed based on maximum 

efficiency followed by parametric studies 
and the dynamic minimization of life cycle 
costs to arrive at the subset seen in this 

schematic; this synthesis/design was 
carried out optimally taking into account 
the dynamic operational control of the 

system.

Note: This configuration has been optimally 
synthesized/designed to respond in the 
shortest time possible to all transients.



Jan 27, 2005Jan 27, 2005 FloridaFlorida

GTGT

UICUIC
VTVTCeraCera

matecmatec

Residential Load Profiles
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Summer Profile:
Approximated load profile. 

Cooling Day in Atlanta, 
Georgia Occurs on 07/11
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Winter Profile:
Approximated load profile. 

Heating Day in Atlanta, 
Georgia Occurs on 01/12

Note: The system is optimally 
synthesized/designed using 
these two profiles back to 
back; the synthesis/design 

accounts for optimal dynamic 
operation and control.
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Optimum Transient Response 
over Entire Load Profile
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Optimum Transient Response 
over Entire Load Profile
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Optimum Transient Response 
over Entire Load Profile
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Optimum Transient Response 
over Entire Load Profile
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VTVT Interaction Analysis
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Effect of Load Power Factor

Effect of Load Power Factor on 
Hydrogen utilization
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Operating temperature increase 
ASR decreases exponentially with increase 
in the temperature
Lesser potential drop
Higher efficiency 
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Effect of step-load transient vs. 
single-load transient

StepStep--load Transientload Transient

SingleSingle--load Transientload Transient

Step-load transient leads to
Significant reduction in the drop of the DC bus voltage
Reduction in increase of the hydrogen utilization and 
current density during the transient

Reduction in the battery size 

StepStep--load load 
TransientTransient

SingleSingle--load load 
TransientTransient
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Conclusion

1D PSOFC model appears to be a good choice to study the load tra1D PSOFC model appears to be a good choice to study the load transient nsient 
effects to reduce computation time without compromising accuracyeffects to reduce computation time without compromising accuracy. But, to . But, to 
accurately study the characteristics including thermal stress, taccurately study the characteristics including thermal stress, temperature, emperature, 
strength, and the reliability prediction should be based on the strength, and the reliability prediction should be based on the PSOFC 2D PSOFC 2D 
model;model;

On a similar note, the stateOn a similar note, the state--space averaged model of PES is better suited for space averaged model of PES is better suited for 
the study of loadthe study of load--transient effects from computational efficiency standpoint; transient effects from computational efficiency standpoint; 

FullyFully--controlled BOPS model may accurately emulate the actual system bcontrolled BOPS model may accurately emulate the actual system but, ut, 
for for spatiospatio--temporal studies on a basic PC, a reducedtemporal studies on a basic PC, a reduced--order lookuporder lookup--table table 
model based on the comprehensive model is a more effective choicmodel based on the comprehensive model is a more effective choice;e;

StepStep--load transients as compared to single loadload transients as compared to single load--transient reduces the transient reduces the 
harmful effects on the SOFC and improves the performance of the harmful effects on the SOFC and improves the performance of the PES, PES, 
which may lead to reduction in the sizes of energywhich may lead to reduction in the sizes of energy--buffering components buffering components 
(e.g., battery or PHT) and hence, the cost and weight of the pow(e.g., battery or PHT) and hence, the cost and weight of the power system.er system.
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Future Works

Build a complete look-up table model for the BOPS to enhance faster 
and accurate simulation

Experimental validation of the obtained simulation result on a PSOFC 
stack

Investigate the electrical feedback effects on the material properties of 
the PSOFC and prediction of life of the PSOFC

Build an optimal hybrid controller for the PSOFC system to optimize the 
stack performance whilewhile enhancing the reliability of the PSOFC
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