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SOFC Anode Requirements

Requirements:
Phase stability in fuel environment
High electronic conductivity
Excellent electrocatalytic activity for fuel oxidation
Adequate porosity for gas transport; 
Chemical and physical compatibility with electrolyte, 
interconnect and/or contact materials
Long-term dimensional and microstructural stability
Ease of fabrication
Low cost
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Applicability to SOFC Developers

At present, Ni-based anodes are state-of-the-art
High electronic conductivity 
Excellent activity for hydrogen and clean reformed fuels
Chemically and physically compatible with YSZ electrolyte
Relatively inexpensive

Most developers acknowledge anode limitations which 
impose constraints:

Anode protection (inert or reducing gas) during thermal cycling 
(system startup, shutdown)
Sulfur-free fuel
Limited amount of hydrocarbons in fuel

Removal of some or all of these constraints would 
significantly reduce system complexity and cost
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R&D Objectives

Overall:
Develop low-cost, high-performance anodes that 
offer low polarization resistance as well as improved 
tolerance for nonidealities in anode environment 
such as redox cycles, sulfer and other poisons, and 
hydrocarbons

Specific:
Develop and evaluate ceramic anodes

2 phase Sr(La)TiO3-δ – Ce(La)O2-δ composites
Electronic conductivity provided by doped strontium 
titanate.
Activity towards fuel oxidation provided by ceria.
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R&D Approach
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Preparation of oxides
Glycine-nitrate synthesis
Calcination
XRD analysis
Attrition milling

Evaluation of electrical  
and thermomechanical
properties
Anode fabrication

Electrode ink prep
Screen printing  on YSZ
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Pros
Excellent activity for H2 oxidation -
comparable to that of Ni-YSZ
Dimensional, chemical and electro-
chemical stability under multiple red-ox 
cycling
Tolerance to sulfur impurities 
Resistance to carbon formation in 
hydrocarbon fuels
Good TEC compatibility with other cell 
components
Good adhesion to YSZ at relatively low 
temperatures

Composite Sr(La)TiO3-δ – Ce(La)O2-δ anodes

Cons
Low electrical conductivity for use as self-
support

Potential reactivity with the YSZ electrolyte 

at high processing temperatures (above 
1300oC)

Loss of electrocatalytic activity following high 
processing temperatures 
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Task I: Effect of H2S
Performances of YSZ electrolyte-supported cells 
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Effect of H2S on polarization resistances of 
ceramic and Ni-YSZ anodes
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Dependence of current density on overpotential and 
exchange current densities of ceramic and Ni-YSZ 

anodes as functions of H2S concentration
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Estimated sulfur coverage on ceramic and 
Ni-YSZ anodes at different H2S concentration
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0.5 at 75 ppm of H2S and 0.9 
in the presence of 750 ppm. 

Much stronger interaction 
between S and Ni.

This can explain the 
hysterias in H2S desorption.

The coverage is 0.9 at 
pH2S>20 ppm under no 
current conditions. 
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Langmuir Isotherm Fit

Adsorption reaction: S
S + M ↔ M-S S + 2M ↔ M     M

• H2S apparently affects 1 site of ceria
• Less certain for Ni (fewer experimental data)

• Formation of surface sulfide is likely, thus blocking the active sites
J. R. Rostrup-Nielsen, K. Pedersen, J. Catal., 59 (1979) 395

• Possibility of multiple  occupation
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• Formation of surface sulfide is likely, thus blocking the active sites
J. R. Rostrup-Nielsen, K. Pedersen, J. Catal., 59 (1979) 395

• Possibility of multiple  occupation
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Polarization resistance of Ni-YSZ anode after 
exposure to 10 ppm of H2S at 850oC
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Task II: Hydrocarbon fuels 
Cell operation on methane

Experimental conditions
160 µm YSZ electrolyte-supported cell;
(La,Sr)TiO3- Ce(La)O2 anode
LSF20 cathode with SDC interlayer; T=850oC;  Cell voltage =0.5 Volt

Experimental conditions
160 µm YSZ electrolyte-supported cell;
(La,Sr)TiO3- Ce(La)O2 anode
LSF20 cathode with SDC interlayer; T=850oC;  Cell voltage =0.5 Volt

• Exhibited 6 times lower performance in 
CH4 compared to that in H2

• Operated steadily in moist methane for
1 week

• After returning to wet H2, exhibited 
performance similar to the initial

• Visually, no carbon deposits seen
on the anode surface after cooling in H2

• Carbon, graphite-like, deposits were 
found on the gold seal rim and at the
end of the alumina tube

• Exhibited 6 times lower performance in 
CH4 compared to that in H2

• Operated steadily in moist methane for
1 week

• After returning to wet H2, exhibited 
performance similar to the initial
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Polarization curves obtained on titanate/ceria 
composite electrode in H2 and CH4 at

800 and 850oC
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Cell operation on propane
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• Cell operated in moist propane for 21
hours 

• Exhibited 4 times lower performance in
C3H8 compared to that in H2 and 1.5
times better performance than in CH4

• After returning to wet H2, cell did not 
return to the initial performance 

• Tar was found on the anode, in all
exhaust tubes and at the outlet
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(La,Sr)TiO3- Ce(La)O2 anode
LSF20 cathode with SDC interlayer; T=850oC;  Cell voltage =0.5 Volt
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Mechanism considerations

Complex impedance spectra obtained on 
titanate/ceria composite anode at 850oC vs
Pt/air in CH4/H2O/N2=1/1 and CH4/H2O=1/2. 

Direct electrochemical oxidation 
of HC is unlikely:

Low activity of CeO2 for C-H 
bond breaking
Good for not coking the anode

Steam reforming is slow:
Almost no effect of H2O on the 
polarization resistance 
Independent catalytic activity test 
(D. King)

Thermal cracking of HC to 
hydrogen and carbon followed by 
either electrochemical oxidation 
of both, or H2 only and removing 
carbon with steam
CO can be utilized as fuel via 
electrochemical oxidation 
(slower) or water gas-shift (faster) 
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Summary
Interactions between H2S and Ni and CeO2 are different:

Ceramic anode shows much smaller change in the performance in the presence of 
H2S and more quickly recoverable.
Ni-YSZ anode is more affected and recovers slowly.
Assumption that H2S blocks 1 site on ceria is in agreement with experimental data 
(Langmuir isotherm).
Possibility of multiple site occupation on Ni consistent with Langmuir isotherm.

Direct methane oxidation on the titanate/ceria anode is unlikely.
Activity for internal on-anode steam reforming of methane is low.
Ceramic composites are not susceptible to coking in methane; thus, there is no 
need for CH4 removal from the reformate.
The direct use of heavier hydrocarbons is unlikely due to the thermal pyrolysis
issues.
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Future work

Test anodes in reformate.

Continued optimization of ceramic anode (dopants, microstructure, 
thickness) to achieve performance and reliability at a level acceptable for 
commercial operation.

Develop contact materials for the ceramic anode to maximize current 
collection between anode and metallic interconnect to achieve reliable and 
thermally cycable SOFCs:

Materials selection 

Degradation mechanisms 

Performance limits under high power density

and during thermal and redox cycling. 

electrolyte

active anode layer
(La,Sr)TiO3/CeO2

current collector

interconnector
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