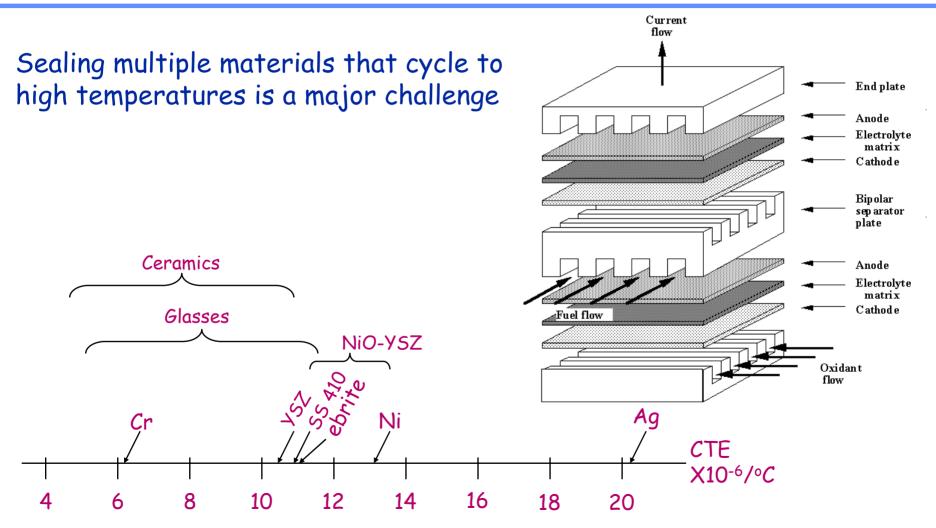
Development of Reliable Methods for Sealing Solid Oxide Fuel Cell Stacks

Ronald Loehman, Mathieu Brochu, Bryan Gauntt, and Raja Shah

Sandia National Laboratories Albuquerque, NM USA


SECA Core Technology Program Review , January 27-28, 2005, Tampa, FL, USA

Supported by the U.S. Dept. of Energy under Contract DE-ACO4-94AL85000

Outline

- Composite approach to SOFC sealing
- Glass and composite properties
- Composites applied to electrolyte and anode-supported SOFCs
- · Some composite seal properties
- Summary and conclusions

Development of reliable seals is the major technical barrier to commercializing SOFCs

Sandia National Labs - Advanced Materials Laboratory

Seals for SOFCs must satisfy some of the most challenging performance criteria in materials engineering

- long-term HT stability in oxidation and reduction (decomposition, vaporization, phase transitions)
- · low reactivity with environment and other components
- strength and toughness at the use temperature
- thermal shock resistance
- · ability to accommodate CTE mismatch
- hermeticity

All for lifetimes of up to 40,000 hours

Composite Sealing Concept

Assume: SOFC components bonded in intimate contact

CTE mismatch

Stress on thermal cycling

Approach:

A deformable seal based on glass flow above its T_g Wetting and reaction controlled by glass chemistry Control viscosity and CTE with powder additive

Slight flow to relieve stress, heal cracks

Composite is rigid enough to remain in joint

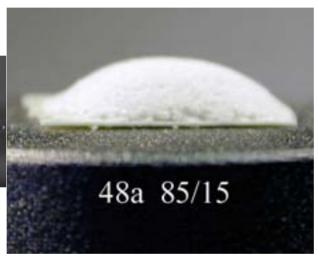
Composite seals can be engineered to provide a wide range of chemical and mechanical properties

Composite CTE depends on individual CTE and modulus values

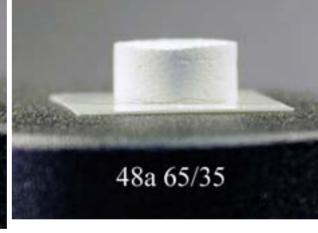
$$\alpha = \frac{\alpha_1 K_1 V_1 + \alpha_2 K_2 V_2}{K_1 V_1 + K_2 V_2}$$

 K_i = modulus, V_i = volume fraction

Viscosity increases with decreasing filler particle size and with increasing filler concentration

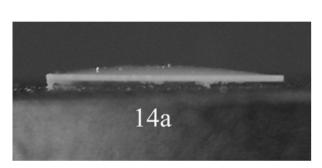

$$\eta = \left(1 + \frac{\kappa \phi}{1 - \begin{pmatrix} \phi \\ \phi_{\text{max}} \end{pmatrix}}\right)^{2}$$

 κ = 1/particle size, ϕ = particle packing density

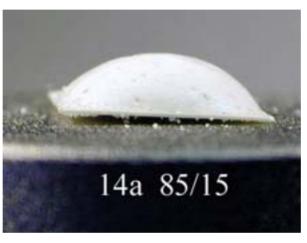

Heating Experiments Show Effect of Glass/Ceramic Powder Ratio on Composite Flow and Viscosity

Glass on YSZ

85 vol% Glass/15%YSZ Powder


65 vol% Glass/35% YSZ Powder

Thermal Cycle: 10°/min to 1100°C, hold 12 min., cool to 850°C, hold 60 min.


Glass Properties: $CTE = 6.1 \times 10^{-6}/^{\circ}C$, $Tg = 623^{\circ}C$

Sandia National Labs - Advanced Materials Laboratory

Heating Experiments Show Interplay of Glass Tg and Ceramic Powder Content on Composite Viscosity

Glass on YSZ

85 vol% Glass/15% YSZ Powder

65 vol% Glass/35% YSZ Powder

Thermal Cycle: 10°/min to 1100°C, hold 12 min., cool to 850°C, hold 60 min.

Glass Properties: $CTE = 9.1 \times 10^{-6}/^{\circ}C$, $Tg = 576^{\circ}C$

Sandia National Labs - Advanced Materials Laboratory

We are developing glass composites for sealing electrolyte-supported SOFC stacks

Objectives

- Apply glass-composite seal concept to electrolytesupported SOFCs
- Develop and adjust the properties of a SiO_2 free, composite glass seal using micron to nano-scale additives
- Determine the seal properties during long term exposure at service temperature

Glass composites for sealing electrolytesupported SOFCs

Seal requirements:

CTE near $10.5 \times 10^{-6} / ^{\circ}C$ to match that of YSZ minimal interaction with electrolyte long term stability

Some aspects of glass seal chemistry:

 SiO_2 (main glass former) is known to poison YSZ by reducing its ionic conductivity

 B_2O_3 is a good glass former, but may be volatile

 ZrO_2 is an effective nucleating agent for glass crystallization

MgO, CaO, and BaO are modifiers, stable under reduction

Al₂O₃ can act as glass former or modifier

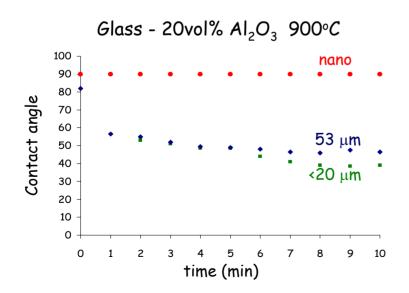
Experimental Procedures

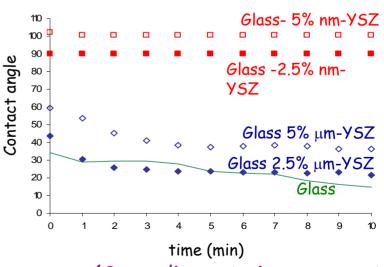
Raw materials:

- BaO -CaO-MgO-Al₂O₃- B₂O₃ glass
- Ceramic powder additives, emphasize nano-YSZ; 27nm diam; 2.5-30 vol% Glass-composite fabrication:
 - Mechanical mixing of raw materials in Spex mill
 - Powder mixture was pressed and consolidated at 50°C above T_{g}

Analysis:

- DTA: TA Instruments STD-2960; Pt crucibles; 10°C/min to 1000°C
- XRD: Siemens D500 diffractometer (Cu Kα); 20-70°
- Wettability: Thermolyne 21100 tubular air furnace; 20°C/min to 800-950°C for 10 min.
- Microstructure: JEOL-5800LV coupled with an Oxford EDS system.
- Thermal expansion: Netzch 402 ED dual rod dilatometer; 50-550°C in air; sapphire standard.
- Long term exposure: Thermolyne 48000; 500 hrs@800°C

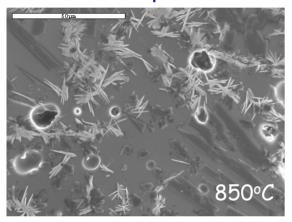

Nano-scale additives have a stronger effect on glass flow than micron-size powder

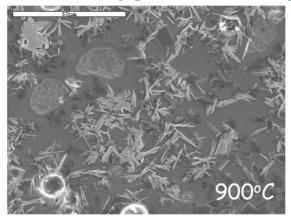

Composite viscosity increases with decreasing filler particle size and with increasing filler concentration

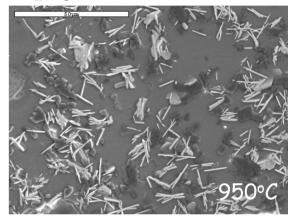
$$\eta = \left(1 + \frac{\kappa \phi}{1 - \left(\frac{\phi}{\phi_{\text{max}}}\right)}\right)^2$$

 $\kappa = 1/\text{particle size}$

 ϕ/ϕ_{max} = particle packing density (volume fraction)

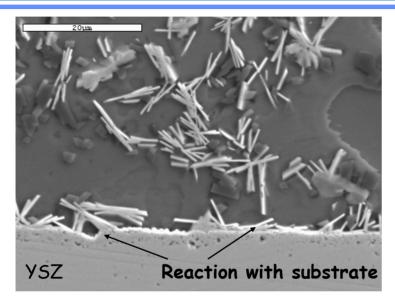





(Spreading rate is a surrogate for viscosity)

The sealing temperature influences the microstructure

Competition between BaZrO₃ growth and MgCaB₂O₅ dissolution



- Reaction between BaO in glass and YSZ forms BaZrO₃ (CTE:7.9x10⁻⁶/°C)
- BaZrO₃ forms as micron-scale needles
- · With increasing sealing temperature:
 - Vol% of BaZrO₃ increases.
 - Dissolution of MgCaB₂O₅ crystals

Dark phase =
$$MgCaB_2O_5$$

Light needles = $BaZrO_3$

Sandia National Labs - Advanced Materials Laboratory

Preferential reaction of BaO with nano-YSZ additive reduces its reaction with electrolyte

5vol%; 950°C; 10min

30vol%; 950°C; 10min

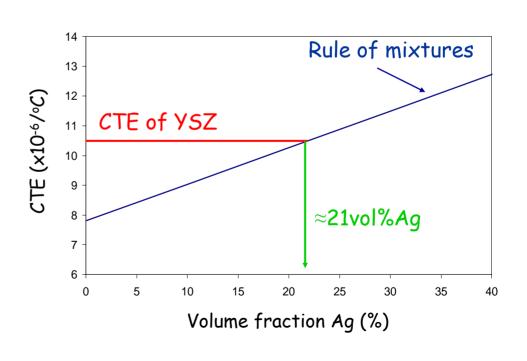
Reaction of BaO with nano-scale YSZ to form $BaZrO_3$ reduces the amount of BaOavailable for reaction with the YSZ substrate

The composite CTE can be adjusted by adding Ag powder and varying the sealing cycle

Previous results showed minimal changes of CTE over time @800°C after sealing at 900°C

$$\alpha_{\text{seal}} = \alpha_{gc} + (\alpha_{Ag} - \alpha_{gc})V_{Ag}$$

$$\alpha_{gc} = 7.8 \times 10^{-6} / {^{\circ}C}$$


$$\alpha_{Ag} = 20.1 \times 10^{-6} / {^{\circ}C}$$

$$\gamma_{SZ}$$

$$\gamma_{gOX}$$

$$\gamma_{gO$$

50

Sandia National Labs - Advanced Materials Laboratory

150

200

250

Summary of results on seals for electrolytesupported SOFCs

- We are developing reliable SiO_2 free composite seals for electrolyte supported SOFCs
- Sealing glasses that contain BaO react with YSZ to form BaZrO₃, which lowers composite CTE (BaZrO₃ CTE = $7.9 \times 10^{-6}/^{\circ}$ C)
- Nano-scale ceramic additives have higher reactivity
 affects the location of the reaction (additive vs. electrolyte)
 more rapid stabilization of seal properties (kinetics of
 BaZrO₃ formation)
- Properties of an equilibrium glass-composite can be adjusted to match substrate material properties

Objectives of this phase of the work

- Develop a glass-composite seal suitable for anode supported SOFCs
- Adjust the properties of a SiO₂-based glass to be compatible with anode and interconnect simultaneously (Glass # 27 provided by Prof. R. Brow)
- Determine the seal properties after long-term exposure at service temperature

Experimental procedures

Raw materials:

- SiO₂-SrO-ZnO-Al₂O₃-CaO-B₂O₃ glass
- Ni additive; 2-3 μ m diam; 5-30 vol%

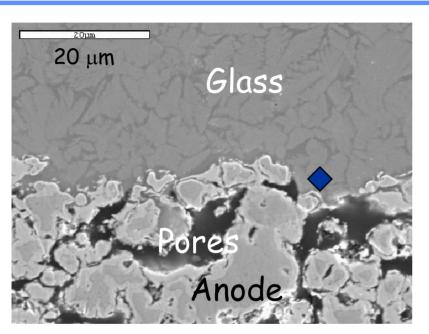
Glass-composite fabrication:

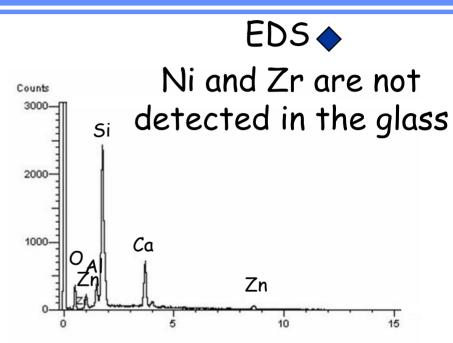
- Mechanical mixing of raw materials in Spex mill
- Powder mixture was pressed and consolidated at 50°C above T_g

Analysis:

- DTA: TA Instruments STD-2960; Pt crucibles; 10°C/min to 1000°C
- XRD: Siemens D500 diffractometer (Cu Kα); 20-70°
- Heat treatment: Controlled atmosphere W elements; 20° C/min to 950° C for 10 min (Ar and Ar-H₂ atmosphere).
- Microstructure: JEOL-5800LV coupled with an Oxford EDS system.
- Thermal expansion: Netzch 402 ED dual rod dilatometer; 50-550°C in air; sapphire standard.
- Long term exposure: Thermolyne 48000; 500 hrs@800°C

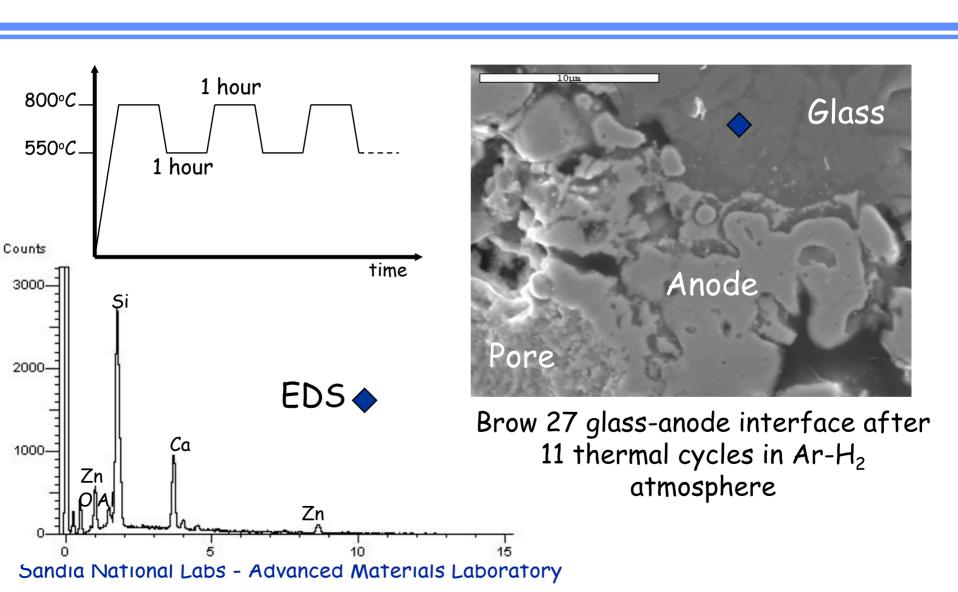
The properties of the glass are suitable for SOFCs seals

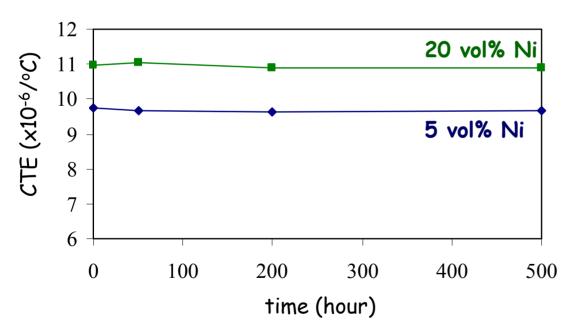

Thermal events during heating

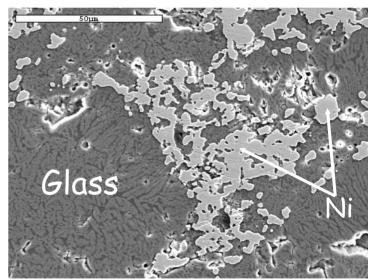

Glass transition temp	700° <i>C</i>
Softening temperature	730° <i>C</i>
Crystallization temp	904° <i>C</i>

Thermal expansion behavior (RT-600°C)

Glassy state	9.7×10 ⁻⁶ /°C
After heat treatment	9.8×10 ⁻⁶ /°C
After 3 days @ 750°C	9.8×10 ⁻⁶ /°C
After 7 days @ 750°C	9.9×10 ⁻⁶ /°C
After 14 days @ 750°C	10×10⁻6/°C

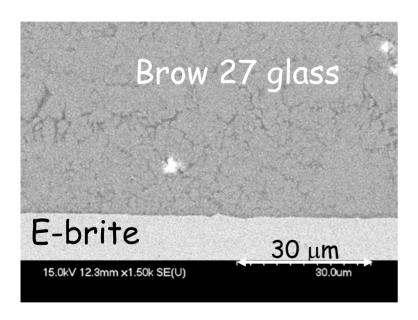

No sign of reaction between the Brow 27 glass and the anode material


- · Adhesion between the glass and the anode
- No dissolution of anode in glass at this scale
- No penetration of the glass into the anode is observed

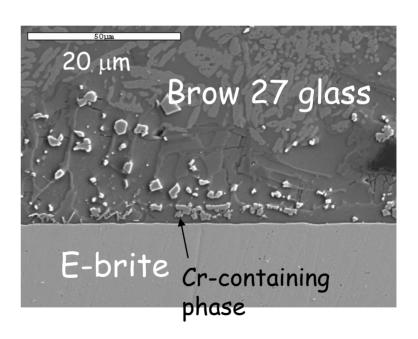

Interface unchanged after multiple thermal cycles

The CTE of composite is stable over time @ 800°C

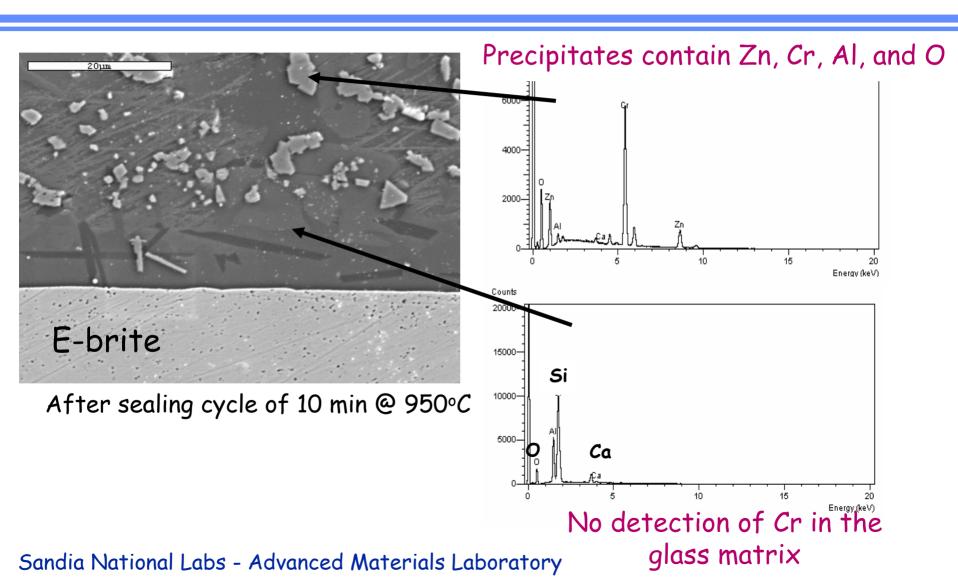
Lack of Ni reactivity with the glass makes Ni powder suitable for adjusting the composite CTE



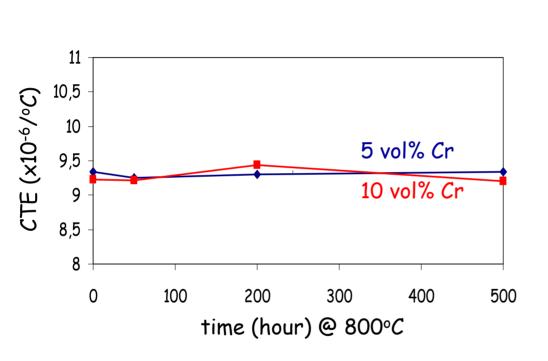
Brow 27 glass-20vol%Ni after sealing cycle of 10 min@950°C


The sealing cycle greatly influences the interaction between the glass and interconnect

Heat treated 2 hours at 800°C and held @ 750°C for 4 days


- No major sign of reaction
- Cr was not detected in the glass by EDS

Heat treated 10 min @ 950°C



 Some dissolution of Cr from E-brite

Brow 27 glass seems to be compatible with E-brite alloy at lower temperatures, but reacts at 950°C

Cr was added to the Brow 27 glass to simulate the effect of Cr dissolution on change of CTE over time

- Compared to pure glass, the addition of Cr reduces slightly the CTE after sealing cycle (10 min@ 950°C)
 - The CTE of the composite remains stable after the initial decrease
- This result suggests that once the glass matrix is saturated with Cr, no further dissolution will occur (compatible with SS)
- Possibility of reducing Cr dissolution by pre-reaction with glass

Conclusions

- This glass system (Brow 27) shows no reaction with the anode materials below $1000^{\circ}C$
- The interface maintains adhesion and structure after thermal cycling
- The glass CTE is around 9.5 \times 10⁻⁶/°C but it can be raised by addition of Ni powder
- The glass seems to have a low solubility for Cr_2O_3 , but some formation of precipitates is observed
- Once the glass is saturated in Cr, the CTE of the glass is stable at about $9.3 \times 10^{-6} / {}^{\circ}C$