Durability and Reliability of Solid Oxide Fuel Cells

Edgar Lara-Curzio
Metals & Ceramics Division
Oak Ridge National Laboratory

Oak Ridge, TN 37831

SECA CTP Review

Tampa, FL January 2005

Outline

- Background
- Stresses in SOFCs
- Reliability Predictions
- Validation of methods to predict reliability
- Summary
- Other
- Creep-resistance of Ni-YSZ

Acknowledgments

ORNL

Miladin Radovic, Claire Luttrell, Rosa M. Trejo, Chris Cofer, Tom Watkins, Claudia Walls

GaTech
Jianmin Qu, Wenning Liu

PNNL
John Deibler and Kurt Recknagle

Failure of Systems

The failure rate of complex systems can be described by the bathtub curve

Failure of Systems

- Mechanical failure is determined by the spectrum of mechanical loads and the distribution of strengths for materials that exhibit stochastic strength.
- The lower tail of the distribution of strengths dictates the reliability of materials that exhibit stochastic strength.

Stress (MPa)

Evaluation of SOFC Materials

Data Base

Data Base

Data Base

Biaxial Strength - Fractography

Large cavity close to tensile surface, NiO-YSZ with ≈6.6 vol% porosity

Surface dimple, NiO-YSZ with 21.9 vol% porosity

Cluster of YSZ grains on the tensile surface, NiO-YSZ with 21.9 vol% porosity

Cavity close to tensile surface, Ni-YSZ with ≈27.3 vol% porosity

Cluster of Ni grains on tensile surface, Ni-YSZ with ≈27.3 vol% porosity.

Failure of Systems

- Mechanical failure is determined by the spectrum of mechanical loads and the distribution of strengths for materials that exhibit stochastic strength.
- The lower tail of the distribution of strengths dictates the reliability of materials that exhibit stochastic strength.

Stress (MPa)

Stresses in SOFCs

Stresses in SOFCs: residual and "reduction" stresses

anode-supported cell

Stresses in SOFCs: residual and "reduction" stresses

anode-supported cell

Residual and "Reduction" Stresses (X-ray diffraction)

Stresses in SOFCs: Manufacturing stresses

Stresses in SOFCs: Operation-induced Stresses

Cross-Flow

Fuel

Counter-Flow

Co-Flow

Failure of Systems

- Mechanical failure is determined by the spectrum of mechanical loads and the distribution of strengths for materials that exhibit stochastic strength.
- The lower tail of the distribution of strengths dictates the reliability of materials that exhibit stochastic strength.

Stress (MPa)

Reliability Predictions

Stochastic nature of strength (CARES)

- In the 1980's DOE co-sponsored the development of CARES (Ceramics Analysis and Reliability Evaluation of Structures).
- CARES is a computer program, which coupled with a finite-element stress analysis, calculates the probability of failure (surface and volume) of ceramic components.
- The overall component reliability is the product of all the element survival probabilities.

Stochastic nature of strength (CARES)

- The probabilistic nature of material strength is described using Weibull's cumulative distribution function.
- The effect of multiaxial stress on reliability is predicted by using the Principle of Independent Action (PIA)

Realiability of SOFCs

Cross-Flow

Cross-Flow configuration

Temperature Distribution

Stress Distribution

Maximum Principal Stress

-650°C

873°C

-0.3 MPa

36 MPa

Courtesy: John Deibler & Kurt Recknagl, PNNL

Cross-Flow configuration

Risk of Rupture Intensities

How do we verify that this methodology really works?

Strength evaluation of test specimens under a temperature gradient

Strength evaluation under a temperature gradient

SpotIR® Heater

test specimen

Infrared Digital Camera

Strength of Ni-YSZ under temperature gradient

QuickTime[™] and a Microsoft Video 1 decompressor are needed to see this picture.

Strength of Ni-YSZ under temperature gradient

QuickTime[™] and a Microsoft Video 1 decompressor are needed to see this picture.

Sample A3-30-L4-06-23 – Temperature Distribution

Sample A3-30-L4-06-23 – Tangential Stress

Sample A3-30-L4-06-23 – Max Principal Stress

Sample A3-30-L4-06-23 – Risk of Rupture Intensity

Sample A3-30-L4-06-10 – Temperature Distribution

Sample A3-30-L4-06-10 – Maximum Principal Stress

Sample A3-30-L4-06-10 – Risk of Rupture Intensity

Strength evaluation under a temperature gradient

Temperature Gradient	Predicted Failure Rate	Actual Failure Rate
440°C	84%	15/17 (88%)
300°C	54%	7/17 (45%)

Strength evaluation under a temperature gradient

- Test specimens (25-mm diameter disks) were subjected to temperature gradients of different magnitude.
- The experimentally-determined failure rates are comparable to those predicted by combining isothermal strength results and the CARES analysis of the test specimen.
- These results are encouraging because they validate the applicability of probabilistic methods towards the design of reliable SOFCs.

Reliability Predictions

Does Ni-YSZ experience creep deformation at SOFC operating temperatures?

- Short-term stress relaxation tests were carriedout at 800°C in 4%H2-96%Ar at different strains/stress to answer this question.
- The duration of the tests was 50 hours.
- The material examined was Ni-YSZ (40%)
- Tests specimens were beams 1.5-inches long, 0.15-inches wide, 0.04-inches thick

- Macor (glassceramic) block
- Channels with three different radii of curvature were machined.
- The curvature of the beams was determined before and after the tests by profilometry.

Applied initial stress: 30MPa Fixture radius: 826 mm

Applied initial stress: 45MPa Fixture radius: 550 mm

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

- Ni-YSZ does creep at 800°C
- Subsequent creep measurements will be carried-out in coordination with Professor Qu's team at GaTech.

Implications of stochastic nature of strength

$$\frac{\sigma_2}{\sigma_1} = \left(\frac{V_1}{V_2}\right)^{\frac{1}{m}}$$

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Comparison of Property-Porosity Trends

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY