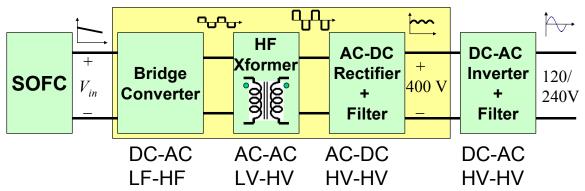
Fuel Cell Current Ripple Reduction with Active Control Technique

January 27 – 28, 2005 SECA Core Technology Program Review Meeting Tampa, Florida

Presented by
Dr. Jih-Sheng (Jason) Lai
Virginia Polytechnic Institute and State University
Future Energy Electronics Center


DOE SECA Project #: DE-FC26-02NT41567
Program Manager: Don Collins of NETL

Outline

- 1. Review of V6 DC-DC converter
- 2. Prototype Development
- 3. Current Ripple Reduction
- 4. Summary of V6 Converter Prototype
- 5. Accomplishments and Future Work

Block Diagram of the SOFC Power Plant

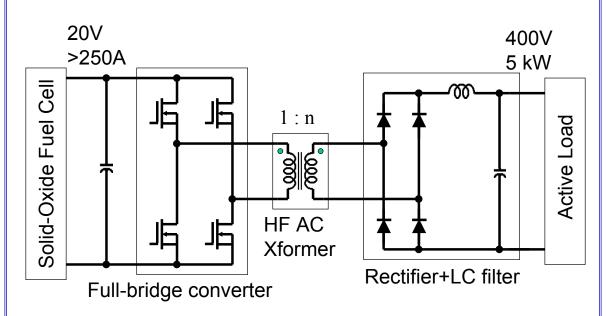
SECA DC/DC converter

- Fuel cell output or converter input is low-voltage DC with a wide-range variation
- Plant output is high-voltage ac
- Multiple-stage power conversions including isolation are needed

Major Issues Associated with the DC/DC Converter

Cost

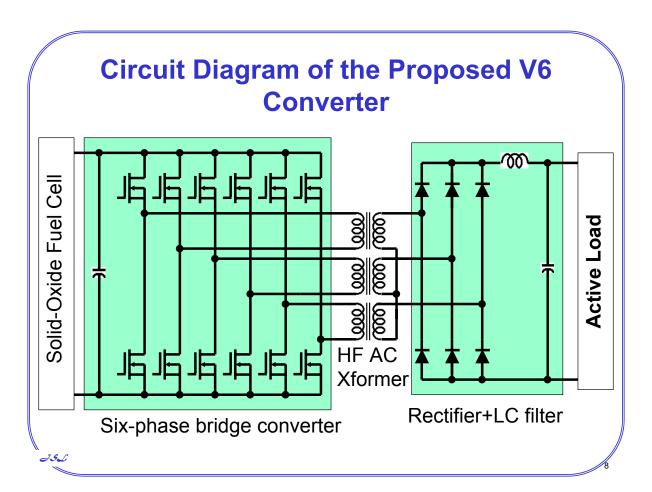
تكى


- Efficiency
- Reliability
- Ripple current
- Transient response along with auxiliary energy storage requirement
- Communication with fuel cell controller
- Electromagnetic interference (EMI) emission

Virginia Tech Approaches

- Efficiency improvement to reduce fuel consumption
- V6 multiphase control to reduce passive components for cost reduction
- Ripple current elimination to reduce size of fuel cell stack
- Soft start and current control to reduce the inrush current so as to improve reliability
- Soft switching to reduce EMI

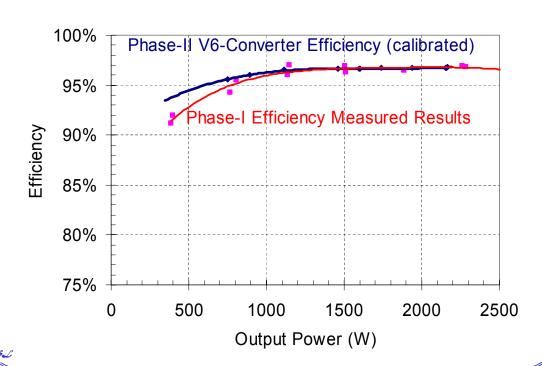
تعى


State-of-the-Art Full-Bridge Converter

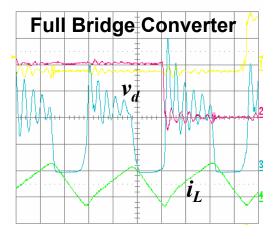
Full-Bridge Converter with Paralleled Devices to Achieve the Desired Efficiency 20V Converter with Paralleled Devices to Achieve the Desired Efficiency Load Voltage clamp

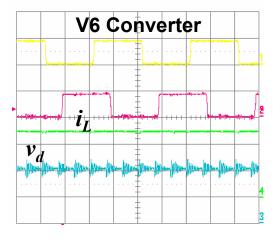
- With 6 devices in parallel, the two-leg converter can barely achieve 95% efficiency
- Problems are additional losses in parasitic components, voltage clamp, interconnects, filter inductor, transformer, diodes, etc.

نكى



Key Features of the V6 Converter


- Double output voltage → reduce turns ratio and associated leakage inductance
- No overshoot and ringing on primary side device voltage
- DC link inductor current ripple elimination → cost and size reduction on inductor
- Secondary voltage overshoot reduction → cost and size reduction with elimination of voltage clamping
- Significant EMI reduction → cost reduction on EMI filter
- Soft switching over a wide load range
- High efficiency ~97%
- Low device temperature → High reliability


ندى

Efficiency Measurement Results

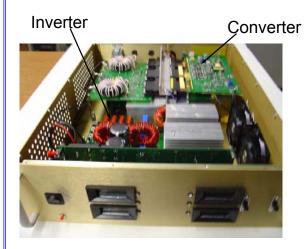
Waveform Comparison between Full-Bridge and V6 Converters

- Secondary inductor current is ripple-less; and in principle, no dc link inductor is needed
- Secondary voltage swing is eliminated with <40% voltage overshoot as compared to 250%

Schematic Circuit Diagrams

Interface board

Digital board

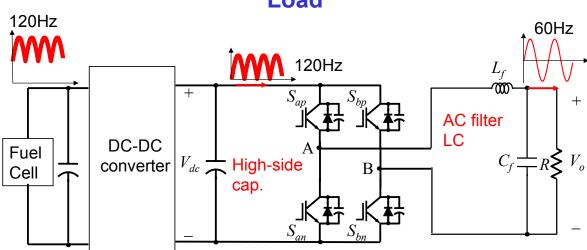

Control board

Gate drive board

Power board

Power board

Photographs of V6-Converter Together with DC-AC Inverter Prototype



Front View

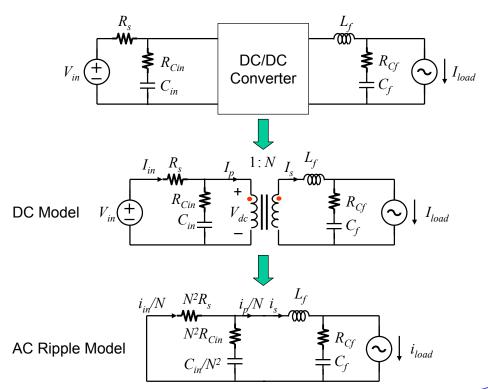
Rear View

#SL ||

Current Ripple Issues with DC-AC Inverter Load

- Current Ripple Propagates from AC Load back to DC side
- With rectification, ripple frequency is 120 Hz for 60 Hz systems
- Low-frequency ripple is difficult to be filtered unless capacitor is large enough

كك


AC Current Ripple Problems

- Inverter AC current ripple propagates back to fuel cell
- Fuel cell requires a higher current handling capability → Cost penalty to fuel cell stack
- Ripple current can cause hysteresis losses and subsequently more fuel consumption → Cost penalty to fuel consumption
- State-of-the-art solutions are adding more capacitors or adding an external active filters → Size and cost penalty
- Virginia Tech solution is to use existing V6 converter with active ripple cancellation technique to eliminate the ripple → No penalty

تكى

15

Circuit Model for AC Current Ripple

JSL

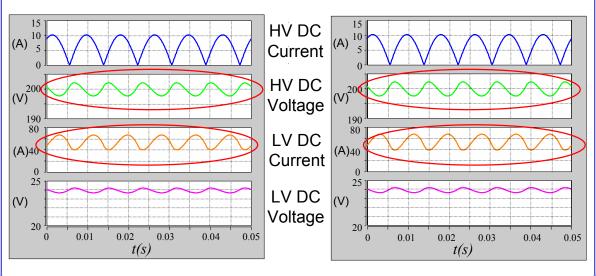
Benchmark DC/DC Converter Parameters for Ripple Study

Input Voltage: 25V

Output Voltage: 200V

Input DC Capacitor: 6mF

Output DC Capacitor: 2200mF

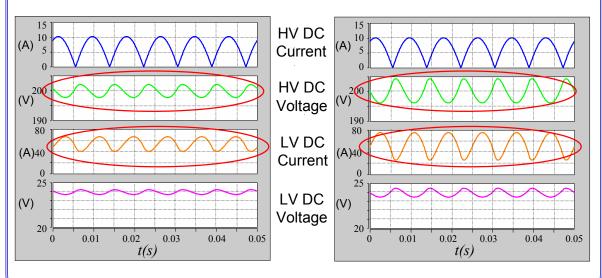

Filter Inductor: 84mH

Inverter Modulation Index: 0.86

Inverter Load Resistor: 16.7Ω

کی

From Theoretical Study and Simulation Input Capacitor has Very Little Effect to Current Ripple Reduction

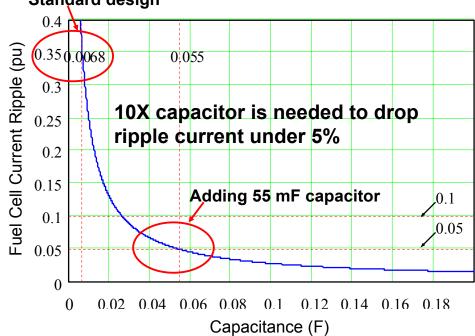

Input Cap 6mF

Input Cap Reduced to 136μF

تر محر

Output Capacitor can be Used as Passive Solution to Current Ripple Reduction

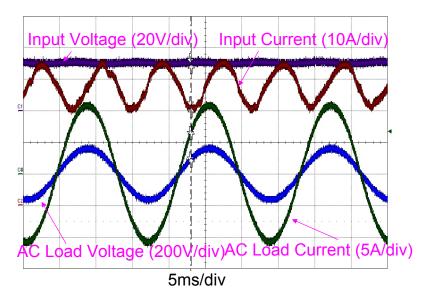
- Cost is a Concern



Output Cap 2.2mF

کی

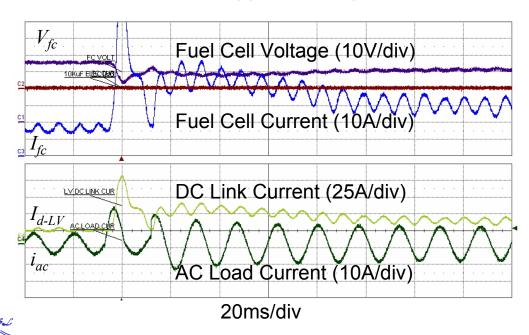
Output Cap Reduced to 820μF


Current Ripple Reduction with High-Side Energy Storage Capacitor Standard design 0.4

19

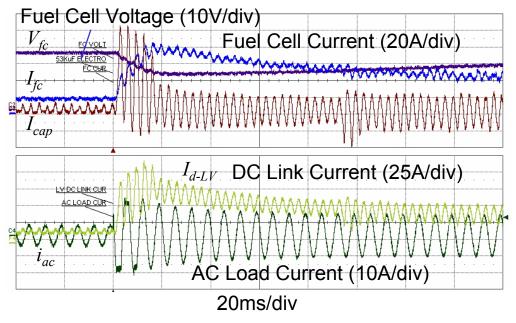
20

Experimental Current Ripples without Adding Capacitors or Controls

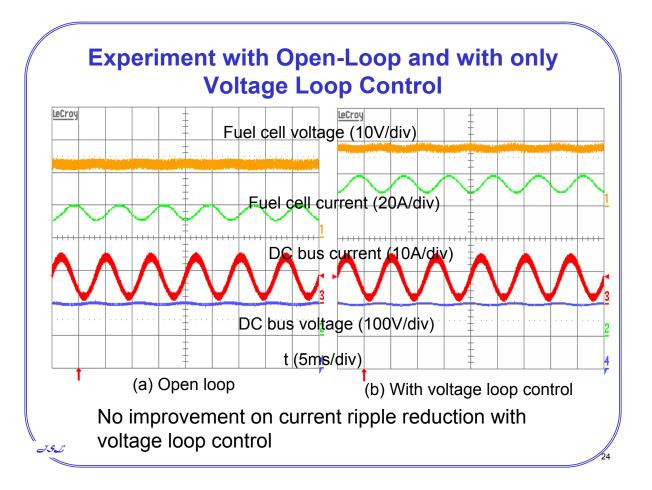

More than 35% ripple current at the input

ركى

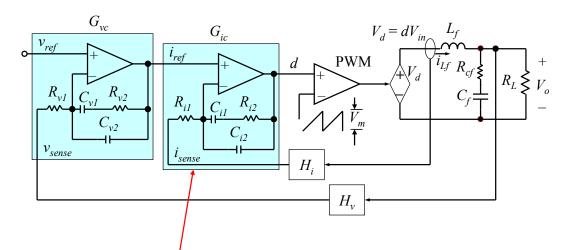
/2


Current Ripple Under Dynamic Condition without Adding Capacitors

Fuel Cell Current Ripple is 35% plus Overshoot

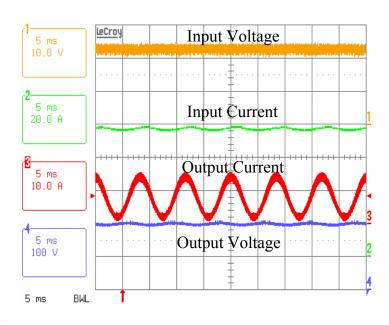


22



کی

Virginia Tech Solution to Ripple Reduction



Adding a current loop to regulate the output current

رگوی

Fuel Cell Current Ripple Reduction with the Proposed Active Control Technique

Fuel Cell Current Ripple is Reduced to 2%

1/2

Summary of V6 DC-DC Converter Prototype

- High efficiency with a wide-range soft switching: 97%
- Cost reduction by cutting down passive components
 - Output inductor filter reduction with three-phase interleaved control: 6X
 - Input high frequency capacitor reduction: 6X
 - Output capacitor reduction with active ripple reduction: 10X
- Reliability enhancement
 - No devices in parallel
 - Soft-start control to limit output voltage overshoot
 - Current loop control to limit fuel cell inrush currents
- Significance to SECA Program and SOFC design
 - Stack size reduction by efficient power conversion and ripple reduction: 20%
 - Inrush current reduction for reliability enhancement

نكحك

*/*57

Prototype and Production Cost Estimate for the 5-kW V6 DC-DC Converter

Quantity	100	1000	10000
Material cost	\$475	\$347	\$227
Tooling, Assembly & Testing	\$1,424	\$347	\$114
Production Cost	\$1,899	\$694	\$341

Key Materials	Parts Count	Qty 1	Qty 10000
Power Circuit	22	\$571.00	\$154.40
Devices	8	\$201.00	\$38.40
Capacitors	6	\$84.00	\$30.00
Transformers	3	\$180.00	\$45.00
Inductors	2	\$24.00	\$8.00
Sensors	2	\$32.00	\$8.00
Contactor	1	\$50.00	\$25.00
Control Circuit	325	\$113.70	\$33.22
Resistors	164	\$18.59	\$2.71
Capacitors	110	\$46.61	\$17.41
Discretes	27	\$8.00	\$2.42
IC's	24	\$40.50	\$10.68
Miscellaneous	55	\$174.80	\$52.44
Total	402	\$840.50	\$227.05

Accomplishments

- Low-cost V6 DC-DC converter prototype has been developed to demonstrate 97% efficiency and tested with PEM fuel cells
- Two invention disclosures have been filed
 - 1. V6 DC-DC converter topology already licensed to PEMDA, Knoxville, Tennessee for renewable energy applications
 - 2. Active current ripple reduction technique

كك

//o

Future Work

- Define SOFC interface protocol and design interface hardware and software
- Test V6 converter with SOFC simulator
- Test V6 converter with SECA SOFC
- Test EMI performance at EPRI-PEAC