Low-Temperature SOFC Materials Development at ANL

Michael Krumpelt James Ralph Terry Cruse Cecile Rossignol Romesh Kumar

Argonne National Laboratory

Presented at:

SECA Core Technology Review June 18-19, 2002 Pittsburgh, PA

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

*Work supported by the U.S. Department of Energy, Office of Advanced Automotive Technologies, Office of Transportation Technologies, under Contract W-31-109-ENG-38.

Low-Temperature SOFC Materials Development at ANL

Michael Krumpelt
James Ralph
Terry Cruse
Cecile Rossignol
Romesh Kumar

Argonne National Laboratory

Presented at:

SECA Core Technology Review June 18-19, 2002 Pittsburgh, PA

Technical Issues

Cathodes:

Lanthanum maganite becomes a marginal cathode below 1000°

Reformed gasoline, diesel or propane contain higher levels of H₂S than natural gas

Issues (continued)

Bipolar Plate

Chromium volatilizes from stainless steels and poisons the electrode reactions

Type of Steel	Transpiration Rate μg m ⁻² s ⁻¹	
Cr ₅ Fe1Y ₂ O ₃	132	
Fe ₂₀ Cr ₅ Al	27	
446	6	

Electrolyte

No issues

R & D Objectives and Approaches

Cathodes

- Synthesize and test materials with improved oxide ion conductivity
- Implant secondary ions into surface to enhance oxygen exchange coefficient

R&D Objectives and Approaches

Anodes

- Develop materials that are more sulfur tolerant than Ni/YSZ.
 - Explore new classes of materials such as WC.
 - Modify nickel surface with metals that have lower affinity for sulfur.

Metal	ΔG_2 (kJ/mol H_2S)	
Ni	-160	
Ru	-69	
Pt	-66	
Rh	-46	
Ag	-38	
Pd	+	

R&D Objectives and Approaches

Bipolar Plate

- Prepare and test ferritic stainless steels with reduced chromium transportation rates.
- Prepare and test ferritic steels without chromium.
- Prepare and test additives to improve oxidation and electrical characteristics.
- Prepare and test best compositions as functionally graded materials.

Results to Date - Cathodes

Ferrite-based perovskites significantly better than manganites

Best performances achieved when ferrite does not react with YSZ

Pr substitution for La appears beneficial – may be an active component (Pr³⁺-Pr⁴⁺)

Results to Date - Cathodes

Long-term and full cell performance appears encouraging for improved La_(1-X)Sr_XFeO₃ and Sr_{0.9}Ce_{0.1}CoO₃

Full Cell Performance of La_(1-X)Sr_XFeO₃ at 800°C compared to LSM at 950°C

Results to Date - Anodes

- Built a fuel cell test stand with silica coated gas manifold and H₂S/reformate metering capability.
- Prepared half cells on YSZ discs with surface modified nickel.

Results to Date: Anodes

WC Anodes were made by:

- sintering YSZ/WC in various gases
- reacting YSZ/WO₂ with CH₄

Sintering Temperature	Initial Material	Constituents Formed	Sinterability
800°C	YSZ/WO ₃ (99.8)	W and WO ₂	Poor
800°C	YSZ/WO ₃ (99.99)	W and WO ₂	Poor
900°C	YSZ/WO ₃ (99.8)	W and WC (more W than 99.99)	Moderate
900°C	YSZ/WO ₃ (99.99)	W and WC	Moderate
1000°C	YSZ/WO ₃ (99.8)	W (small amount) and WC	Moderate
1000°C	YSZ/WO ₃ (99.99)	WC	Moderate
1100°C	YSZ/WO ₃ (99.8)	WC	Good
1100°C	YSZ/WO ₃ (99.99)	WC	Good

Results to date Bipolar Plate

Alloys with modified surface compositions have been made

Results to date – Bipolar Plate

A compositionally graded ferritic stainless steel plate with alloy/LaCrO₃ composite layers

Area Specific Resistance of Alloys

(At 800°C, 400 hrs Exposure Humid Air)

Weight Gain of Alloys

(At 800°C, 400 hrs Exposure Humid Air)

Applicability to SOFC Commercialization

- LSF cathodes still need microstructural optimization and life testing.
- Sulfur-tolerant anodes are not yet available.
- 5 x 5 cm test samples of experimental new bipolar plates will be available in the next 12 months for evaluation by others.

Activities for the Next 6-12 Months

Cathodes

- Focus efforts to optimize composition of best cathodes.
- Determine optimum microstructure and fabrication procedure for further improvement.
- Prove results in single cell and small stack tests.

Anodes

• Test experimental new anodes in H₂S containing fuel.

Bipolar Plates

- Make modifications to alloy compositions, produce, and test new alloys based on information from current materials' test.
- Scale-up process to 5 x 5 cm.

