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= High-power-density anode able to operate on as-
received HC fuels

= To reduce or eliminate need for fuel processing and
contaminant removal upstream of the FC stack

= By fabricating anode bi-layer that has an active
interlayer
= Within the constraint of low melting point of Cu oxide




= Eliminate or reduce carbon deposition so that it
does not compromise cell operation.




Dry CH, OCYV at 800°C with ~600LL
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Dry CH, Pertformance at 800°C (~600L
Anode, 131 Electrolyte, ~1001 Cathode)
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Dry CH, Performance at 800°C and 0.5V (~600L
Anode, 131 Electrolyte, ~100 Cathode)
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Differences Between GTI and Literature
for Previous Dry CH, Results at 800°C*

GTI Results Literature Results
(U. Of Pennsylvania)
OoCvV OCV declines from ~0.95  OCV initially ~0.93
to ~0.7V after 200 hrs Time dependence not
Some C available
Constant V decline tracks OCV Not available
Current decline

Load accelerates C
Cell life <250hrs

Constant ~32 mW/cm2to 75 Cell operates for >1000
0.5V mW/cm2in 5 hrs hrs
Then decline so that cell Any C does not
lasts for only 25 hrs prevent operation
Heavy C

* On tape-cast, wet-impregnated Cu/Ceria/YSZ/LSM Cells. GTI
cells are 2.85 cm2 with 13 electrolyte. Literature cells are <0.5
cm? with 60 electrolyte.




Experimental Set-Up for 3 cm? Cells
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Dry CH, Polarization Curve
(~600 Anode, 131 Electrolyte, ~100u Cathode)
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SEM/EDAX of C Deposit at OCYV
(Dry CH,, 800C, 13 Electrolyte, Top of Anode)
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C Deposit at OCYV (Dbry CH,, 800C, 13
Electrolyte, Bottom of Anode)
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Post-Test Cell Resistance
(Thin Electrolyte)

SOFC-03-04 978 Q
Dry CH,
(800,750,700°C)

SOFC-02-18 500 Q
Dry CH, (800°C)

SOFC-02-07 830,000-880,000 Q
H,, 3%H,0 (700°C)




Candidate Reasons for OCYV Decline

= Electrical short through seal and/or electrolyte due to C
deposition
= Stable OCV and long life with H,
= Thin electrolyte
= No edge face seal
= Observe C in seal area (as well as throughout the anode)
= More stable OCV in humidified fuel
= Low cell resistance at room temperature

= Gas-phase C deposition due to seal and/or electrolyte leak
followed by changes in gas and/or electrolyte

= C deposition due to other test parameters followed by
changes in gas and/or electrolyte

= Could include anode microstructure, flow rate,
flow/temperature distribution, supply line residence time, etc.




Plans For C Reduction

= Weight gain in dry HC flow
= To rule out microstructure or fuel purity effects

m OCV stabilization

= Thicker electrolyte
= Thinner anode

= Alternative sealing
= Changing flow

= Reduce temperature
=« Etc.

= Constant voltage experiments
= After OCV is stabilized

gti



Dry CH, Performance at 800°C and 0.5V (194
Anode, 831 Electrolyte, ~4611 Cathode)
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= Fabricate and scale-up cells with active inter-
layer and sufficient mechanical strength




Status

= Fabricated cells up to
2.5”x4”area

= By standard dual tape-
casting, wet impregnation
method

= Cells do not yet contain
active interlayer

= Mechanical strength is
less than desirable




= Tape-cast thick, porous, p-particle size YSZ support
Deposit i-particle size active interlayer on anode support
Deposit thin, p-particle size YSZ electrolyte/co-sinter at 1400-
1550C
Apply and sinter p-particle size cathode
Wet impregnation of Cu/ceria salts/calcine/reduce

= Variations planned to address issues of deposition on porous
substrate, thin-layer integrity, mechanical strength, Cu
agglomeration




= Dry powder press porous, nm-particle size, Cu/ceria/YSZ anode
Deposit nm-particle size, active interlayer on anode support

Deposit nm-particle size, YSZ electrolyte
Apply nm-particle size cathode
Sinter structure below Cu oxide melting point

Fabricated cermet anode support

= Variations planned to address issues of deposition on porous
substrate, thin-layer integrity, mechanical strength, Cu
agglomeration




m Tape-cast p-particle size cermet powder
Follow steps in method 1 except for impregnation
= Tape-cast p-particle size Cu/cerialYSZ cermet

Deposition of nm-particle size interlayer and
electrolyte

= Metallic-supported structures




= Develop a quantitative model for electrochemical
performance in systems that are
thermodynamically capable of depositing C




Status

= Thermodynamic modeling performed to compare
mechanisms below for two fuel composition cases:

1. Direct oxidation of methane
CH,+40= - CO, +2H,0O + 8e (anode)
20, + 8e -~ 407 (cathode)

CH,+20,=CO,+2H,0
2. Methane reforming with water-shift reaction followed
by oxidation of hydrogen

CH, +2H,0 - CO, + 4H, (anode)
4H,+ 40 -~ 4H,0+8e (anode)
20, + 8e - 407 (cathode)

CH, +20,=CO,+ 2H,0




Theoretical OCV for 40%CH,/40%H,0/20%
CO, at 700C and Low CH, Conversion
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Theoretical OCV for 19.61%CH,/80.39% H,O
at 800°C and Low CH, Conversion
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OCYV at Lower H,0/CO, Concentrations
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= Kinetic and thermodynamic modeling of dry and
near-dry HC oxidation to develop mechanisms
for:
= Electrochemical performance
= Changes in long-term, dry HC performance

= Variations in C formation and cell performance under
different operating conditions and cell geometries

= OCV properties
= OCV decline with time in thin-electrolyte cells
= OCV variations with butane
= Low dry CH, OCV on catalytic and non-catalytic anodes




Conclusions

= Dry or near-dry HC oxidation is worth
investigating
= No fuel processing, no steam, no recycle of steam or
fuel, simpler piping and manifolding, simpler heat
management, faster response time, simpler controls
= Research has shown that laboratory cells operating on

certain HC fuels are not compromised by C deposition
after >1000 hours

= Relatively simple periodic “cleaning” of the anode may
be possible




Conclusions

= Cell life depends upon minimizing C formation

= Higher electrolyte integrity or more tailored anode
microstructure may be required for a dry HC cell as
compared with a H,-fueled cell

= Recent results suggest that conditions for long-term
operation can be achieved in 2.85cm? cells
= A range of approaches are available for
fabrication of Cu-based cells containing an active
interlayer

= Preliminary thermodynamic OCV modeling is
consistent with a mechanism based on CH,
reforming followed by H, oxidation

gti
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