OXIDATION OF DRY AND NEAR-DRY HYDROCARBONS AT HIGH-POWER-DENSITY ANODES

K. Krist, O. Spaldon-Stewart, R. Remick Gas Technology Institute J. Jewulski, Technologix Corporation

> SECA Core Technology Program Workshop Sacramento, CA February 20, 2003

Overall Objective and Approach

- High-power-density anode able to operate on asreceived HC fuels
 - To reduce or eliminate need for fuel processing and contaminant removal upstream of the FC stack
- By fabricating anode bi-layer that has an active interlayer
 - Within the constraint of low melting point of Cu oxide

Interim Objective I

Eliminate or reduce carbon deposition so that it does not compromise cell operation.

Dry CH₄ OCV at 800°C with ~600μ Anode, 13μ Electrolyte, ~100μ Cathode

Dry CH₄ Performance at 800°C (~600μ Anode, 13μ Electrolyte, ~100μ Cathode)

Dry CH₄ Performance at 800°C and 0.5V (~600μ Anode, 13μ Electrolyte, ~100μ Cathode)

Differences Between GTI and Literature for Previous Dry CH₄ Results at 800°C*

	GTI Results	Literature Results (U. Of Pennsylvania)
OCV	OCV declines from ~0.95 to ~0.7V after 200 hrs Some C	OCV initially ~0.93 Time dependence not available
Constant Current	V decline tracks OCV decline Load accelerates C Cell life <250hrs	Not available
Constant 0.5 V	~32 mW/cm² to 75 mW/cm² in 5 hrs Then decline so that cell lasts for only 25 hrs Heavy C	Cell operates for >1000 hrs Any C does not prevent operation

^{*} On tape-cast, wet-impregnated Cu/Ceria/YSZ/LSM Cells. GTI cells are 2.85 cm² with 13 μ electrolyte. Literature cells are <0.5 cm² with 60 μ electrolyte.

Experimental Set-Up for 3 cm² Cells

Dry CH₄ Polarization Curve

(~600μ Anode, 13μ Electrolyte, ~100μ Cathode)

SEM/EDAX of C Deposit at OCV (Dry CH₄, 800C, 13μ Electrolyte, Top of Anode)

C Deposit at OCV (Dry CH₄, 800C, 13µ Electrolyte, Bottom of Anode)

Post-Test Cell Resistance

(Thin Electrolyte)

SOFC-03-04 Dry CH ₄ (800,750,700°C)	978 Ω
SOFC-02-18 Dry CH ₄ (800°C)	500 Ω
SOFC-02-07 H ₂ , 3%H ₂ O (700°C)	830,000-880,000 Ω

Candidate Reasons for OCV Decline

- Electrical short through seal and/or electrolyte due to C deposition
 - Stable OCV and long life with H₂
 - Thin electrolyte
 - No edge face seal
 - Observe C in seal area (as well as throughout the anode)
 - More stable OCV in humidified fuel
 - Low cell resistance at room temperature
- Gas-phase C deposition due to seal and/or electrolyte leak followed by changes in gas and/or electrolyte
- C deposition due to other test parameters followed by changes in gas and/or electrolyte
 - Could include anode microstructure, flow rate, flow/temperature distribution, supply line residence time, etc.

Plans For C Reduction

- Weight gain in dry HC flow
 - To rule out microstructure or fuel purity effects
- OCV stabilization
 - Thicker electrolyte
 - Thinner anode
 - Alternative sealing
 - Changing flow
 - Reduce temperature
 - Etc.
- Constant voltage experiments
 - After OCV is stabilized

Dry CH₄ Performance at 800°C and 0.5V (194μ Anode, 83μ Electrolyte, ~46μ Cathode)

OCV is 980-983 mV

Interim Objective II

 Fabricate and scale-up cells with active interlayer and sufficient mechanical strength

Status

- Fabricated cells up to 2.5"x4"area
 - By standard dual tapecasting, wet impregnation method
 - Cells do not yet contain active interlayer
 - Mechanical strength is less than desirable

Fabrication Approach I

Tape-cast thick, porous, μ-particle size YSZ support Deposit μ-particle size active interlayer on anode support Deposit thin, μ-particle size YSZ electrolyte/co-sinter at 1400-1550C

Apply and sinter μ-particle size cathode Wet impregnation of Cu/ceria salts/calcine/reduce

 Variations planned to address issues of deposition on porous substrate, thin-layer integrity, mechanical strength, Cu agglomeration

Fabrication Approach II

- Dry powder press porous, nm-particle size, Cu/ceria/YSZ anode Deposit nm-particle size, active interlayer on anode support
 Deposit nm-particle size, YSZ electrolyte
 Apply nm-particle size cathode
 Sinter structure below Cu oxide melting point
- Fabricated cermet anode support
- Variations planned to address issues of deposition on porous substrate, thin-layer integrity, mechanical strength, Cu agglomeration

Other Approaches Under Evaluation

- Tape-cast μ-particle size cermet powder
 Follow steps in method 1 except for impregnation
- Tape-cast μ-particle size Cu/ceria/YSZ cermet Deposition of nm-particle size interlayer and electrolyte
- Metallic-supported structures

Interim Objective III

 Develop a quantitative model for electrochemical performance in systems that are thermodynamically capable of depositing C

Status

- Thermodynamic modeling performed to compare mechanisms below for two fuel composition cases:
 - 1. Direct oxidation of methane

$$CH_4 + 4O^= \rightarrow CO_2 + 2H_2O + 8e$$
 (anode)
 $2O_2 + 8e \rightarrow 4O^=$ (cathode)
 $CH_4 + 2 O_2 = CO_2 + 2H_2O$

2. Methane reforming with water-shift reaction followed by oxidation of hydrogen

$$CH_4 + 2H_2O \rightarrow CO_2 + 4H_2 \qquad \text{(anode)}$$

$$4H_2 + 4O^2 \rightarrow 4H_2O + 8e \qquad \text{(anode)}$$

$$2O_2 + 8e \rightarrow 4O^2 \qquad \text{(cathode)}$$

$$CH_4 + 2 O_2 = CO_2 + 2H_2O$$

Theoretical OCV for 40%CH₄/40%H₂O/20%CO₂ at 700C and Low CH₄ Conversion

Theoretical OCV for 19.61%CH₄/80.39% H₂O at 800°C and Low CH₄ Conversion

OCV at Lower H₂O/CO₂ Concentrations

Plans

Kinetic and thermodynamic modeling of dry and near-dry HC oxidation to develop mechanisms for:

- Electrochemical performance
 - Changes in long-term, dry HC performance
 - Variations in C formation and cell performance under different operating conditions and cell geometries
- OCV properties
 - OCV decline with time in thin-electrolyte cells
 - OCV variations with butane
 - Low dry CH₄ OCV on catalytic and non-catalytic anodes

Conclusions

- Dry or near-dry HC oxidation is worth investigating
 - No fuel processing, no steam, no recycle of steam or fuel, simpler piping and manifolding, simpler heat management, faster response time, simpler controls
 - Research has shown that laboratory cells operating on certain HC fuels are not compromised by C deposition after >1000 hours
 - Relatively simple periodic "cleaning" of the anode may be possible

Conclusions

- Cell life depends upon minimizing C formation
 - Higher electrolyte integrity or more tailored anode microstructure may be required for a dry HC cell as compared with a H₂-fueled cell
 - Recent results suggest that conditions for long-term operation can be achieved in 2.85cm² cells
- A range of approaches are available for fabrication of Cu-based cells containing an active interlayer
- Preliminary thermodynamic OCV modeling is consistent with a mechanism based on CH₄ reforming followed by H₂ oxidation

