

Solutions that make the Nation's energy systems safe, efficient and secure

METALLIC ALLOYS FOR SOFC

John S. Dunning, D. E. Alman and M. Ziomek-Moroz

U.S. Department of Energy - Albany Research Center Albany, OR 97321 - www.alrc.doe.gov

SECA Core Technology Program Review Sacramento, California February 19-20, 2003

ARC Program

Program scheduled to begin in FY2004

- Funding level \$2 million
 - Proposed in President's FY2004 budget.
 - DOE-FE via AMP Program at ARC.
- Support SECA program via metallic alloy development for SOFC.
 - Metal interconnects
 - BOP

Technical Approach (Summary)

- Melt a matrix of 10 lb experimental heats. Fabricate to sheet form.
- Agree on screening test regime to evaluate experimental compositions.
- Melt 80 to 100 lb ingot(s) of candidate alloy(s) and fabricate to sheet for evaluation (available to SECA cooperators).

Technical Approach

- Metallic Alloys
 - Ni-, Fe-, Co-base superalloys
 - Cr- base alloys
 - Stainless steels
- Matrix of 10 lb (4.5 kg) experimental heats of modified commercial compositions will be melted & rolled to sheet form
 - Ferritic stainless steel (interconnect)

Technical Approach

- Devise with cooperating SECA laboratories appropriate experimental matrices.
- Agree on screening tests.
- Relate screening test results to film morphology.

Metallic Interconnect Requirements

- High temperature oxidation/corrosion
- CTE match (rigid seals)
- Thermodynamic stability
- Chemical compatibility (sealing glasses)
- Electrical conductivity bulk resistance and scale resistance
- Stack design

Technical Approach

- Produce 100 lb (45 kg) heats of candidate alloy(s)
- Reduce ingots to sheet form for evaluation
- Alloy(s) available to SECA cooperators.

ARC CAPABILITIES

Alloy Production

- Vacuum induction melt 5 or 50 kg charges.
- Forge and roll (2 and 4 high) into plate/sheet

Ingot Capabilities

Rolling Capabilities

Oxidation/Corrosion Resistant Alloys Development at ARC

- Extensive research on minor alloying elements to improve oxidation and corrosion resistance.
 - Chromium substitution in stainless steels (1980's)
 - Minor alloy additions to improve oxidation/corrosion resistance in near commercial compositions of stainless steels

Oxidation Resistant Alloy Development

Oxide Scale Morphology Analysis

alloy	oxide feature	thickness (penetration)
2Si	film	2-5 🖳 m
3Si-1Al	film	5-7 🖳 m
	internal	15-25 ⊒m
2Si-2Al	film	7-15 🖳 m
	internal	25-30 🗏 m

Oxidation at 800°C

Preliminary Sulfidation Testing

exposure to 1 pct. H₂S at 700°C for 360 hrs

Time Profile of the Oxidation Process (800°C)

J.S. Dunning, J.M. Oh, and J.C. Rawers, in *Alternative Alloys for Environmental Resistance*, TMS, 1987.

Oxide Scale-Base Metal 2Si alloy exposed at 800°C

SECA Core Technology Program Review

Albany Research Center

SECA Core Technology Program Review

Albany Research Center

High Temperature Gaseous Corrosion Facility

N₂, O₂, CO₂, CO HCl, H₂S, H₂, CH₄, SO₂, Steam (simulate real SOFC environments)

Dual Environment Test Setup

Dual Environment Test Setup multiple sheet specimens

Planned Activities

- Plan alloy matrix for interconnects (FY-03)
 - input from SECA program
- Melt (10 lb ingots) and fabricate test matrix of alloys (FY-03)
- Test and evaluate matrix alloys (FY03-FY04)
- Melt (100 lb ingot) and fabricate candidate alloy(s) (FY04)
- Provide test material to cooperating SECA laboratories. (End of FY-04)