SECA Core Technology Program - PNNL: SOFC Component Materials Development

Jeff Stevenson
Pacific Northwest National Laboratory
Richland, WA 99352

Presented at the SECA CTP Review Meeting Sacramento, CA, Feb. 19, 2003

SECA Core Technology Program - PNNL: SOFC Component Materials Development

- ► Program Scope:
 - Intermediate Temperature Cathode Materials Development
 - Advanced Anode Materials Development
 - Metallic Interconnect Materials Evaluation and Development
 - SOFC Stack Seal Development

Presentation Outline

- ► Intermediate Temperature Cathode Materials Development
- Metallic Interconnect Materials Evaluation and Development
- For each task:
 - Objective
 - Previous Status
 - Results
 - Future Work

Intermediate Temperature Cathode Materials Development

Cathode Materials Development

Objective: Develop and optimize high performance, stable cathode materials for intermediate temperature SOFC

Variables:

- Base composition, type and amount of dopant
- Initial particle size distribution (calcination and milling conditions), fugitive phases
- Sintering temperature and time

Approach:

- Synthesis (glycine-nitrate) and characterization of candidate cathode powders (XRD, dilatometry, SEM, PSA, TGA, electrical conductivity)
- Fabrication of cathodes on anode-supported membranes via screen printing and sintering
- Evaluation of cathode performance by electrochemical testing and SEM

Sr-Doped LaFeO₃ Cathode Development

Advantages:

- High ionic conductivity
- Rapid oxygen surface exchange kinetics
- TEC match to other components
- High electronic conductivity
- Iron is inexpensive Bsite constituent

Introduction of doped ceria layer improves performance\

Anode-supported cell w/ LSF-20 cathode (Previous status)

Cell: LSF Cathode / SDC Interlayer / YSZ Electrolyte / Ni-YSZ anode

Fuel: 97% H₂ / 3% H₂O (Low Fuel **Utilization**)

Oxidant: Air

T(°C)	Power at 0.7V (W/cm ²)
650	0.36
700	0.63
750	0.85
800	1.21 Pacific Northwest National Laboratory U.S. Department of Energy 7

Role of ceria layer: Prevention of reaction between YSZ and LSF?

Mixtures of LSF and YSZ, heated to 1400°C for 2 h, showed no evidence of zirconate formation. (Contrary to case with LSCo and YSZ).

Role of ceria layer: Prevention of reaction between YSZ and LSF?

However, for T ≥ 1000°C, LSF peaks were shifted, indicating expansion of lattice due to change in composition of perovskite phase.

Results using ZrO₂ and Y₂O₃ indicate Zr⁴⁺ from YSZ incorporated onto B-site of perovskite lattice; conclusion is supported by EDX results

Impact of Zr⁴⁺ on LSF Conductivity

Significant reduction in electrical conductivity of LSF w/ increasing

$$[Sr_{La}] + [Fe_{Fe}] = [Fe_{Fe}] + 2[V_O^{\bullet \bullet}] + [Zr_{Fe}]$$

Conclusion: Ceria interlayer required for LSF cathodes sintered at T ≥ 1000°C

Enhancing LSF Sinterability

► Goal: Modify the LSF cathode to sinter onto YSZ below 1000°C to avoid the LSF-YSZ interaction. Compositions of the type (La_{0.8}Sr_{0.2})_{0.98}Fe_{0.98}M_{0.02}O₃ are being considered.

(La_{0.8}Sr_{0.2})_{0.98}Fe_{0.98}Cu_{0.02}O₃ Performance Data

Initial performance data indicates significantly improved power density (1.4-1.8 W/cm² at 750°C and 0.7V) for the new cathode material sintered on YSZ at 950°C.

Metallic Interconnect Materials Evaluation and Development

Metallic Interconnects for SOFC

Objectives:

- Identify and quantify degradation processes in candidate alloys
- Develop a cost-effective optimized material for intermediate temperature interconnect applications

Approach:

- Screen testing of candidate alloys (chemical, electrical, mechanical properties)
- Materials development
 - Surface modification (surface doping, protective coatings)
 - Bulk modification

Screen testing of candidate alloys

- ► Emphasis on "Chromia-forming" Ferritic Stainless Steels:
 - CTE match, conductive oxide scale, low cost, ease of fabrication

Screening Studies

Chemical Screen	 Oxidation in air, fuel, and dual atmosphere environments (scale thickness, composition, and microstructure) Chemical compatibility with alkaline earth-aluminosilicate glass seals Oxide scale thermodynamic stability
Electrical Screen	ASR measurements under SOFC exposure conditions
Mechanical Screen	 Investigation of thermal expansion Interfacial bonding strength with glass seals

Thermal expansion

Selected alloys offer good CTE match to SOFC components

Electrical Resistance of Scales on Selected FSS

Coupon samples were pre-oxidized in air at 800°C for 100h before carrying out tests in air at 800°C.

Scale Resistance for Crofer22APU at 700, 800°C (in air)

Microstructures of cross-sections of samples from conductivity tests (in air)

Note: Reduced Cr volatility due to (Cr,Mn)₃O₄ outer scale

ASR of Crofer22 APU and Effects of Conductive Oxide Coatings

Both bare and coated samples were pre-oxidized in air at 800°C for 100h before carrying out tests in air at 800°C.

Oxidation Behavior of Crofer22APU: Dual Atmosphere vs. Air

Air exposure at both sides

Air-side of dual exposure

Repeated EDX analyses on Crofer22APU tested under dual exposure indicate the presence of Fe in the scale

Dual Atmosphere w/ Thermal Cycling

Thermal cycling tests:

5°C/min to 800°C, 100h dwell

3 cycles

XRD patterns from the airside of dual test vs. air exposure only

Airside under dual exposure w/ cycling

Pacific Northwest National Laboratory U.S. Department of Energy 23

Elemental mapping of scale formed at the air side

Future Work (Short-term)

- Continue to study role of dual atmosphere exposure on corrosion of alloys
- Extend screening studies to include ZMG232, a new ferritic stainless composition developed by Hitachi Steel for SOFC applications
- ➤ Study the evaporation of scale on metallic interconnect
- ➤ Investigate the feasibility of doping interconnect surface to minimize scale growth / electrical resistance

Acknowledgements

- ► Cathode Development: Steve Simner, Mike Anderson
- Interconnect Development: Gary Yang, Prabhakar Singh, Matt Walker
- ► Financial Support:
 - Solid-State Energy Conversion Alliance Core Technology Program (SECA)

Compositions of FSS

FSS	Fe	Cr	С	Mn	Si	Мо	Ti	Al	Р	S	La+Ce
AISI430	Bal.	16.0	0.1	1.0	1.0				0.03	0.03	
AISI446	Bal.	26.0	0.2	1.5	1.0				0.04	0.03	
E-brite	Bal.	26.0	0.001	0.01	0.025				0.02	0.02	
AL453	Bal.	22.0	0.03	0.3	0.3		0.02	0.6	0.02	0.03	0.1
Crofer22 APU	Bal.	22.0	0.005	0.5			0.08		0.016	0.002	0.06La
ZMG232	Bal.	22.0	+ other elements								