SOFC Seals: Requirements, Issues, Advanced Concepts

SECA Core Technology Program – SOFC Seal Meeting July 8, 2003

Sandia National Laboratory, Albuquerque, NM

Pacific Northwest National Laboratory U.S. Department of Energy 1

SOFC SEALS

Functions

- •SOFC seals prevent mixing of fuel and oxidant within stack
- •SOFC seals prevent leaking of fuel and oxidant from stack
- •SOFC seals electrically isolate cells in stack
- •SOFC seals may provide mechanical bonding of components

Requirements

While fulfilling the above functions, seal materials must remain:
•structurally stable
•chemically compatible with other stack components
•inexpensive

Recap: SOFC Seal Requirements

Functional requirements and materials selection parameters

Mechanical	 Hermetic (or near hermetic) Minimal CTE mismatch (or ability to yield or deform to mitigate CTE mismatch stresses) Acceptable bonding strength (or deformation under compressive loading) Thermal cycle stability Vibration and shock resistance (for mobile applications)
Chemical	 Long-term chemical stability under simultaneous oxidizing/wet fuel environments Long-term chemical compatibility with respect to the adjacent sealing surface materials Resistance to hydrogen embrittlement/corrosion
Electrical	Non-conductive
Fabrication	 Low cost High reliability with respect to forming a hermetic seal Sealing conditions compatible with other stack components
	Pacific Northwest National Laboratory U.S. Department of Energy

rgy 3

Recap: SOFC Seal Materials "Issues"

Long term structural stability

- Bulk cracking
- Re-crystallization
- Interface de-bonding
- Reaction products: Layer formation, Porosity formation
- Chemical stability
 - Interface reactions
 - Evaporation
 - Dissolution
 - Hydrogen-assisted corrosion

SOFC SEALS: Food for Thought

Fundamental Room Temperature Analogs:

Rigid Glue (Epoxy)

Compliant Glue (Rubber cement)

Compressive Seal (Rubber O-rings, head gasket)

Advanced Seal Concepts:

- Self healing ceramic composite seals
- Graded TEC seals
- Wet seals
- High temperature spring seals

Battelle

Self-healing Seals

Room temperature analog:

Self-healing Polymers

Might improve toughness of glass-ceramic seals, but keep in mind that glass seals frequently fail at interfaces rather than through bulk

Gould, "Self-help for ailing structures," Materials Today, p. 44, June 2003

Bulk healing triggered by changes in temperature or environment?

Pacific Northwest National Laboratory U.S. Department of Energy 6

Is CTE grading possible in thin sections?

Baffelle

Wet Seals

- At operating temperature, seal is liquid (highly viscous or contained in porous matrix by surface tension).
- At low temperatures, seal solidifies, but is non-bonding, allowing for sliding to prevent stress buildup
- Utilized in Molten Carbonate Fuel Cells (600-700°C)
 - Singh et al., Corrosion 87, NACE (1987).

Stable, non-reacting liquid? Pacific Northwest National Laboratory U.S. Department of Energy 8

Battelle

Wet Seals

- At operating temperature, seal is liquid (highly viscous or contained in porous matrix by surface tension).
- At low temperatures, seal solidifies, but is non-bonding, allowing for sliding to prevent stress buildup
- Utilized in Molten Carbonate Fuel Cells (600-700°C)
 - Singh et al., Corrosion 87, NACE (1987).

Raffelle

Stable, non-reacting liquid? Pacific Northwest National Laboratory

Compliant Metal Spring Seals

High temperature "springs"

- E.g., Metal O-rings in a groove
- Fill hollow tube with ceramic fiber?
- Ceramic coating to provide electrical insulation?

