Ellingham Diagram

Growth rates of selected oxides CoO>NiO>Cr₂O₃>Al₂O₃

Thermodynamic stabilities of selected oxides Al₂O₃>Cr₂O₃>CoO>NiO

Effect of Electrical Current on Oxidation Rate

Overall reaction: $2M + O_2 = 2MO; \Delta G_{MO}^{\circ}$

Oxidation Under Open Circuit Conditions

$$v_{i} = -\frac{B_{i}}{1} \left(\frac{\partial \mu_{i}}{\partial x} + Z_{i}F \frac{\partial \phi}{\partial x} \right)$$
$$j_{i} = C_{i}v_{i} = -\frac{C_{i}B_{i}}{N_{A}} \left(\frac{\partial \mu_{i}}{\partial x} + Z_{i}F \frac{\partial \phi}{\partial x} \right)$$

$$kTB_i = D_i = \frac{N_A RT\kappa_i}{C_i (Z_i F)^2}$$

Replace B_i in j_i

$$j_i = -\frac{\kappa_i}{Z_i^2 F^2} \left(\frac{\partial \mu_i}{\partial x} + Z_i F \frac{\partial \phi}{\partial x} \right)$$

Consider a scale growing by cations moving outward.

$$j_{c} = -\frac{\kappa_{c}}{Z_{c}^{2}F^{2}} \left(\frac{\partial \mu_{c}}{\partial x} + Z_{c}F \frac{\partial \phi}{\partial x} \right) \quad (A.)$$

$$(B.)$$

$$j_{e} = -\frac{\kappa_{e}}{Z_{e}^{2}F^{2}} \left(\frac{\partial \mu_{e}}{\partial x} + Z_{e}F \frac{\partial \phi}{\partial x} \right) \quad (B.)$$

Electrical Neutrality (C.) $Z_c j_c + Z_e j_e = 0$

$$\frac{\partial \phi}{\partial x} = -\frac{1}{F(\kappa_c + \kappa_e)} \left[\frac{\kappa_c}{Z_c} \frac{\partial \mu_c}{\partial x} + \frac{\kappa_e}{Z_e} \frac{\partial \mu_e}{\partial x} \right]$$

The cation flux now becomes:

$$j_{c} = -\frac{\kappa_{c}\kappa_{e}}{Z_{c}^{2}F^{2}(\kappa_{c}+\kappa_{e})} \left[\frac{\partial\mu_{c}}{\partial x} - \frac{Z_{c}}{Z_{e}}\frac{\partial\mu_{e}}{\partial x}\right]$$

Considering ionic equilibrium and integrating across the oxide

$$j_c = -\frac{1}{Z_c^2 F^2 x} \int_{\mu_M}^{\mu_M'} \frac{\kappa_c \kappa_e}{\kappa_c + \kappa_e} d\mu_M$$

The relation between \boldsymbol{j}_{c} and scale growth rate is

 $j_c = C_M \frac{dx}{dt}$

C_M mol cm⁻³

Comparison with the parabolic rate equation

 $\frac{dx}{dt} = \frac{k'}{x}$

where k' is the parabolic rate constant in cm^2s^{-1} .

$$k' = \frac{1}{Z_c^2 F^2 C_M} \int_{\mu_M'}^{\mu_M'} \frac{\kappa_c \kappa_e}{\kappa_c + \kappa_e} d\mu_M$$

Oxidation in the Presence of an Impressed Current

Equations (A) and (B) are unchanged. Equation (C) is written:

$$\begin{split} Z_c F j_c + Z_e F j_e &= i \\ \frac{\partial \phi}{\partial x} &= -\frac{1}{F(\kappa_c + \kappa_e)} \bigg[\frac{\kappa_c}{Z_c} \frac{\partial \mu_c}{\partial x} + \frac{\kappa_e}{Z_e} \frac{\partial \mu_e}{\partial x} + \bigg] - \frac{i}{(\kappa_c + \kappa_e)} \\ j_c &= -\frac{\kappa_c \kappa_e}{Z_c^2 F^2 \kappa} \bigg[\frac{\partial \mu_c}{\partial x} - \frac{Z_c}{Z_e} \frac{\partial \mu_e}{\partial x} \bigg] + \frac{\kappa_c i}{Z_c F \kappa} \\ i_{Stop} &= \frac{\kappa_e}{Z_c F} \frac{\Delta \mu_M}{x} \end{split}$$

Note: If the external oxygen pressure is 1 atm,

 $\Delta \mu_M = \Delta G_{MO}^o$

$$k' = k'_{OC} \left[1 - \frac{i}{i_{Stop}} \right]$$

For chromia at 900°C: $\kappa_e = 10^{-2}$ (ohm cm)⁻¹ Park & Natesan, 1990 $\Delta G^{\circ} = -820,000$ J/mole

For a 1 μ m thick oxide: i_{Stop} = -140 A/cm²

For a typical Fuel Cell current density of 1 A/cm²,

(Note: if Park & Natesan's 2-probe data are correct there could be a substantial effect of current on chromia growth.)

Parabolic Rate Constants 900C dry air

	Parabolic Rate Consta	nt
Nickel	2.61x10 ⁻¹¹ g ² /cm ⁴ s	
Sr-doped Nickel	2.23x10 ⁻¹¹ g ² /cm ⁴ s	

Surface Micrographs

Nickel 900C

Sr-doped Nickel 900C

Planar SOFC Configuration

Oxidized Ni-50 Cr Alloy

Cr-Rich Second Phase has Dissolved in the Cr-Depleted Zone

Diagram of Apparatus

Dry Air Exposures – 700°C

Simulated Anode Gas (Ar-4%H₂, H₂O) Exposures – 700°C

Microstructural and Phase Identification Crofer 700°C

Degradation Mechanism

Bulk Degradation Related to :

- 1.Dissociation and dissolution of \underline{H} and \underline{O} in the bulk metal
- 2. Interaction between dissolved H & O to form High pressure H_2O gas
- 3. Nucleation and growth of steam bubbles/voids at GB/defects

Courtesy of Dr. Prabhakar Singh, PNNL

Partial pressures of CrO_3 in Equilibrium with Cr_2O_3 , MnO-saturated $MnCr_2O_4$, and $LaCrO_3$

Note: similar reductions would be achieved in the pressure of CrO₂(OH)₂

Crofer oxidized in contact with LaSrMnO₄ (cathode) for 88hrs at 900°C in air + 0.1atm H_2O

