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Present SOFC ElectrolytesPresent SOFC Electrolytes
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Conductivity Comparison

• Conductivity: LSGM at 650° C > YSZ at 800°C
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Conductivity Comparison:
LSGM and YSZ Electrolyte
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Benefits of LSGM Electrolyte
• Stability in SOFC environment (air and fuel pO2)

Ionic transference number ~1
• Potential for 650°C operation

Conductivity comparable to YSZ at 800 - 850°C
Compatibility with perovskite cathode 
La(Sr)CoO3-∂, excellent cathode for 650°C operation
Metal interconnect challenges are reduced
Lower system cost
650 - 700°C operation well-suited for partial internal 
reformation; offering a significant reduction in heat 
exchanger requirement
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Challenges
Materials
• Synthesis

Phase Purity
• Ceramic processing

Densification
Thin layer fabrication

• Strength
• Cost

Fuel Cell
• Anode material 

compatibility
Reactivity with nickel

• Cathode material
• Long-term stability
• Stack performance
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Synthesis
• Multi-cation perovskite

Preferred phase: La(Sr)Ga(Mg)O3-∂

Potential second phases: SrLaGaO4 and SrLaGa3O7, 
La4Ga2O9

• Approach
Precursor control
Milling / Calcination temperature
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Process control: Phase pure LSGM
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Ceramic processing
• Densification

Sintering temperature (literature: 1450 - 1550°C for 
several hrs)

o Reactivity with setters
o Ga evaporation?

Control of powder characteristics (eg. surface area) 
allows reduction in sintering temperature 1400 - 1450°C
Sintering aid
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Sintering Study
Density of LSGM 
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Thin LSGM electrolyte
• Multiple approaches to making thin LSGM 

electrolyte

Cathode
Electrolyte

Anode Anode

Electrolyte

Tape cast support
Screen printed electrolyte Tape cast laminated structure
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Strength
• Limited information in the literature

147 MPa (isopressed bar) Du et al.
113 MPa Sammes et al. 

• Preliminary Result: 129 MPa

• Additional work done at Sandia National Lab.
(Raj Tandon and Ron Loehman)
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LSGM Strength
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Test Conditions: 800 C exposure for 100 hr. in 
air, strength=168 MPa

Sample # T2 22

Failure origin appears to be a near surface defect
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Strength test at 800 C in air; 132 MPa

Failure origin appears to be a near surface defect

Sample #T1-41
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Summary of strength test

• Pores are still the major failure causing defects
• Exposure to high temperature in air - slight 

reduction in strength
• Exposure to high temperature in hydrogen - no 

change
• Thermal cycling in air - slight reduction
• Thermal cycling in hydrogen - increase in strength
• Test at high temperature - reduction in strength
• Process improvement in reducing flaws should 

improve strength
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Anode material compatibility
• Reduce Ni reaction with modified anode composition

• Powder mixture (LSGM + modified anode) calcination at 
1350°C for four hours
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Cost

• Parametric cost estimate of raw material oxides
(using USGS published cost of high purity oxides)
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Single Cell Performance

• ASR at 700°C, thin LSGM supported on anode structure:~ 0.5 ohm.cm2
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Single cell long-term test

• Stable button cell performance (anode as support)
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Cathode as support
• Benefits

Materials compatibility - Perovskite electrolyte and 
cathode
Allows use of thin anode => high fuel utilization
No phase change from fabrication to operation compared 
to anode that undergoes reduction (associated volume 
shrinkage)
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Cell Performance (Cathode Support)

• Electrolyte thickness 75 µm
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Cathode supported cell
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Performance Improvement

• 75 micron electrolyte
• Additional porosity in thick cathode structure
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Single cell stability
• ASR at 700°C with thin LSGM supported on cathode 

structure: ~ 0.5 ohm.cm2

CSG-0134: 700°C
750mA/cm2
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Cell Scale-up

• Tape cast development to fabricate 10 x 10 cm cells
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Stack Test (10x10cm 8-Cells)
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Stack test
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Stack post-test analysis
• Interaction of Cr from interconnect with Sr in cathode

LSGMLSCo

Cr map Sr map
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Anode-Electrolyte Interface

• Post-test analysis (1200-hr test) did not show evidence of Ni 
diffusion
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Summary
• LSGM is a promising electrolyte candidate for 

intermediate temperature SOFC
• Technical hurdles can be solved by a combination of 

basic and applied R&D
Cathode as support provides certain benefits not 
available to anode supported cells

• Progress in zirconia stack R&D can be applied 
directly (e.g., metal interconnects)
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