Coatings for SOFC Interconnects

DOE SOFC IC Coating Team
Argonne National Laboratory
July 28-29, 2004
Outline

• Issues and Limitations of State-of-Art Materials
• Status
• Development Needs
• Approach
• Summary
• Contributors
Issues and Limitations of State-of-the-Art Materials

• No known bulk alloy that will meet all present performance, reliability, and cost requirements
 – Low ASR (< 10 milliohm square centimeter)
 – Minimal Cr volatilization and cathode poisoning
 – Good stability
 • Thermal cycling
 • Current conduction
 • Dual atmospheres (fuel and air)
 – Good CTE match between coating and substrate
 – Ability to produce in high volume at low cost
• Development of alternative alloys to meet requirements will take a long time and will require substantial investment
• It should be possible to develop coatings and surface modifications more quickly and at lower cost
Status – Coatings Under Consideration

• Perovskites
 – Short-term in-stack testing has shown performance benefits; tested at ~1000 hours at 800°C
 – Need more long-term durability testing

• Spinels Containing Ni, Cr, Al, Mn, Y, Ti & La
 – Physical vapor deposition (PVD) of spinels and carborundum
 – Under evaluation for SOFC application: ASR at 800 °C; thermal cycling and continuous test
 – Optimization of coating architecture, including functionally gradient coatings, multilayers and nanostructures

• Amorphous Metal Coatings
 – No devitrification at 800°C; devitrification at 1000 °C
 – Corrosion resistance in near-saturation boiling calcium chloride

• Other Potential Coatings
 – Magnetite (Concern with Further Oxidation)
 – Conducting Oxides: Zn; ITO (Thermal & Chemical Stability; Cost; Electrical Conductivity)
 – Oxide Glasses (Chemical Compatibility with Cathode & Substrate; Electrical Conductivity)
Development Needs – Coatings

• Financial support to develop formulations that are chemically compatible with cathode and substrate/interconnect
• Testing to demonstrate that coatings meet technical requirements
 – Low ASR (< 10 millohm square centimeter)
 – Minimal Cr volatilization and cathode poisoning
 – Good stability
 • Thermal cycling
 • Current conduction
 • Dual atmospheres (fuel and air)
 – Good CTE match between coating and substrate
 – Adherence under cyclic thermal and mechanical load
• Economical processing for high volume production
 – Examples: Sol Gel; Physical Vapor Deposition; Chemical Vapor Deposition; Thermal Spray; Diffusion Saturation; etc.
 – Ability to meet SECA cost targets; detailed costing study; high-volume production at low cost
• Methods for in situ deposition assembled device
 – Examples: Sol Gel Process
Approach – Coatings

• Form integrated collaborative teams between SOFC industry, universities, and national (federal) laboratories
• Secure financial support from DOE to develop formulations that are chemically compatible with cathode and substrate/interconnect
• Establish formal selection criteria for design, synthesis, and characterization of acceptable new coating systems, including out-of-stack and in-stack testing
 – Low ASR (< 10 milliohm square centimeter)
 – Minimal Cr volatilization and cathode poisoning
 – Good stability during thermal cycling, current conduction, and in dual atmospheres
 – Good CTE match between coating and substrate
 – Adherence under cyclic thermal and mechanical load
• Selection and prioritization of most promising candidate coatings
• Explore new innovative concepts for economic production of coatings
 – Physical Vapor Deposition; Chemical Vapor Deposition; Thermal Spray; Diffusion Saturation; etc.
 – Methods for in situ deposition inside assembled devices, such as sol gel and PVD
• Testing to demonstrate that produced coatings meet technical requirements
• Demonstrate ability to meet SECA cost and technical performance and service-life targets; detailed costing study; high-volume production at low cost
Summary – Coatings

• Status
 – No alloy exists that meets all needs
 – A new alloy or coating is needed
 – Some coatings have shown promising performance in preliminary tests
 – Long-term durability has not yet been demonstrated

• Development Needs
 – Additional formulations are needed that satisfy chemical compatibility, mechanical and electrical property needs
 – Cost effective processes have to be developed for high-volume production of coatings
 – Research, development and engineering activities are all needed

• Approach
 – Form integrated collaborative teams between SOFC industry, universities, and national (federal) laboratories with frequent formalized interactions
 – Research with integration of results from different investigators
 – Demonstrate ability to meet SECA cost and technical performance and service-life targets
Contributions

- John Smeggil – UTRC
- Bruce Lanning – SWRI
- Guo-Quan Lu – Virginia Tech
- S. Elangovan – Ceramatec
- Steve Kung – SOFCo-EFS
- Raj Singh – University of Cincinnati
- Vladimir Gorokhovsky – Arcomac Surface Engineering, LLC
- Subhasish Mukerjee – DELPHI
- Anil Virkar – University of Utah
- Joe Farmer – LLNL