Oxidation Resistant, Cr retaining, Conductive Coatings on Metallic Alloys for SOFC Interconnects

V.I. Gorokhovskya, D. VanVorousa, M.C. Deibertb, P.E. Gannona,b

Arcomac Surface Engineering, LLCa, in collaboration with Montana State Universityb, sponsored by the Solid Energy Conversion Alliance (SECA) Core Technology Program

SOFC Metallic Interconnects

- Promise
 - Lower operating temperatures (600-800°C) may allow inexpensive metallic alloys for SOFC interconnects
- Challenge
 - Conventional metallic alloys develop protective oxide scales during SOFC exposure, degrading performance

Arcomac’s Technical Approach

- 2-Segment Coating Concept:
 - 1st Segment: vanadium-substituted Cr-CoxOxAl2O3 (oxidation resistant diffusion barrier, bond coating)
 - 2nd Segment: outer barrier Chromium-CuCr (electrical conductivity, erosion resistance)

SOFC Interconnect Function:

SOFC Stacking

Coating Adhesion Assessment - Rockwell Indentations

Future Work

- Optimize Coating Architecture and Composition to Meet or Exceed SECA SOFC Interconnect Cost and Performance Requirements
- Expand Testing and Analyses to more Prototypical SOFC Exposure
- Assess Coating Process Scale-Up, Economics and Technology Transfer to SECA Industrial Teams