# Research on SOFC Materials with Emphasis on Electrodes

Anil V. Virkar, Feng Zhao, Ramanan Ganeshanathan, Yi Jiang and Tad J. Armstrong
Department of Materials Science & Engineering
University of Utah
Salt Lake City, UT 84112, USA

Presented at SECA Core Technology Workshop Sacramento, CA February 19, 2003

Project Title: Cathodes for Low Temperature SOFC: Issues Concerning Interference from Inert Gas Adsorption and Charge Transfer

#### Technical Issues Addressed:

- 1) The effect of inert gas (e.g.  $N_2$ ) on the cathodic reaction.
- 2) The measurement of transport parameters, which govern cathodic polarization.

### R & D Objectives and Approach

- To synthesize dense samples of perovskite MIEC including LSM (which is predominantly an electronic conductor with negligible ionic conductivity), LSC and LSF.
- To investigate the oxygen incorporation reaction using mixtures of  $O_2$  and  $N_2$ , as well as of  $O_2$  and Ar.
- To fabricate anode-supported cells with MIEC + YSZ or MIEC + SDC composite cathodes.
- To investigate cell performance and cathodic polarization as a function of temperature and the composition of the oxidant.

### Results to Date

- Cathode Polarization important parameters
   Concentration and Activation polarization
- Estimation of Relevant Parameters from V-I curves.
- Experimental work on the characterization of MIEC materials for cathodes
  - Surface exchange and diffusion
- Investigation of Cathodes in Cells
- Summary

### Effect of Oxygen Concentration



Anode Thickness ~ 1mm

### Effective O<sub>2</sub>-N<sub>2</sub> Diffusivity through Porous Cathode



## Anode Limiting Current Density: Slope gives (approximately) Effective Fuel Diffusivity



#### Cathodic Concentration Polarization

Cathodic Short Circuit Current Density

$$i_{cs} \approx \left[ \frac{4FD_{O_2 - N_2}^{eff}}{RTl_c} \right] p \ln \left( \frac{p}{p - p_o} \right)$$

**Concentration Polarization** 

$$\eta_{conc(c)} = -\frac{RT}{4F} \ln \left( 1 - \frac{i}{i_{cs}} \right)$$







**Current Density** 

Cathode thickness 200 µm

Point to note: At  $\sim 0.8$  A/cm<sup>2</sup>, the conc. pol. is  $\sim 50$  mV. But the short circuit current density is only about  $\sim 0.9$  A/cm<sup>2</sup>.

### Anodic Concentration Polarization: Comparison of H<sub>2</sub>-H<sub>2</sub>O with CO-CO<sub>2</sub>

$$i_{as} \approx \left[\frac{2FD_{H_2-H_2O}^{eff}}{RTl_a}\right] p_{H_2}^o \qquad \eta_{conc(a)} = -\frac{RT}{2F} \ln\left(1 - \frac{i}{i_{as}}\right) + \frac{RT}{2F} \ln\left(1 + \frac{p_{H_2}^o i}{p_{H_2O}^o i_{as}}\right)$$

For CO-CO<sub>2</sub>, replace  $p_{H_2}^o$  by  $p_{CO}^o$  and  $p_{H_2O}^o$  by  $p_{CO_2}^o$ 



#### **Activation Polarization**

**Assume Tafel Limit** 

$$\eta_{act} \approx a + b \ln i$$

where

$$a \approx -\frac{RT}{4\alpha F} \ln i_o^c$$

 $a \approx -\frac{RT}{A_{OF}} \ln i_o^c$   $i_o^c = \text{Exchange current density}$ 

 $i_o^c$  is a function of  $p_{O_2}^{int}$ . The higher the  $p_{O_2}^{int}$ ,

the higher is the  $i_0^c$ 

The  $i_0^c$  also depends upon the electrocatalyst, and microstructure.

Thus, activation polarization is not independent of concentration polarization.



**Activation Polarization** 

and other parameters

### Activation Polarization (Contd.)

Exchange current density,  $\frac{i_o^c}{i_o^c}$ , depends upon a number of parameters.

- 1) The higher the surface exchange parameter,  $\frac{k_{exc}}{}$ , the higher is the  $\frac{i^{c}}{i^{c}}$ .
- 2) The higher the oxygen vacancy concentration of the cathode, the higher is the  $i^{c}$ .
- 3) The higher the oxygen ion conductivity (or oxygen diffusivity), the higher is  $\frac{i_0^c}{i_0^c}$ .
- 4) The finer the microstructure, (generally) the higher is the  $\frac{i^c}{i^c}$ .
- 5) The higher the temperature, the higher is the ic/o.
  6) The higher the pO<sub>2</sub>, the higher is the ic/o.

The above is for the cathode. Similar is the case for the anode, with  $pO_2$  replaced by  $pH_2$ , for example.

#### Activation Polarization using Polarization Curves:



#### Activation Polarization using Polarization Curves:



### Activation Polarization using Polarization Curves:



### Activation Polarization: Slope of $R_{ct(eff)}$ vs. $p^{-0.5}$

| Electrode | Gas Mixture                      | Slope |
|-----------|----------------------------------|-------|
| Cathode   | O <sub>2</sub> -N <sub>2</sub>   | 0.19  |
| Anode     | H <sub>2</sub> -H <sub>2</sub> O | 0.048 |
| Anode     | CO-CO <sub>2</sub>               | 0.63  |

- 1) The slope is a measure of activation polarization. The higher the slope, the lower is the exchange current density, the higher is the activation polarization.
- 2) Inverse of the slope includes many parameters, including parameters that describe the ease of adsorption of the electroactive gaseous species.
- 3) With  $H_2$  as the fuel, and  $O_2$  as the oxidant, the anode 'activity' is about four times the cathode activity.
- 4) Nickel-based anode is very good with  $H_2$  as a fuel but not with CO as a fuel.

### Conductivity Relaxation Technique

**Objective:** To estimate the surface exchange coefficient and chemical diffusion coefficient of oxygen for prospective MIEC cathode materials.

- The technique consists of measuring the time dependence of total conductivity of an MIEC at temperature after an abrupt change of atmosphere.
- The technique can yield information on the surface exchange coefficient,  $\frac{k_{exc}}{}$ , and the chemical diffusion coefficient of oxygen,  $\tilde{D}$ .
- The technique has been used in our work on LSC.
- An improved method of analysis is being developed, which facilitates the estimation of the two transport parameters.  $R_{ct(eff)}^{c} \propto \frac{1}{\sqrt{\widetilde{D}k_{max}}} \quad \text{or} \quad i_{o}^{c} \propto \sqrt{\widetilde{D}k_{exc}}$

### Conductivity Relaxation Technique for Surface Exchange and Diffusion MIEC conductivity depends upon oxygen partial pressure





**Current leads** 



= Chemical diffusion coefficient of oxygen  $(cm^2/s)$ 

 $k_{exc}$  = Surface exchange parameter (cm/s)

g(t) is a normalized conductivity function

Plot 
$$\frac{g(t)}{\sqrt{t}}$$
 vs.  $\sqrt{t}$ 

Initial Slope 
$$(t \rightarrow 0) = \frac{2k_{exc}}{l}$$

## Examples of $g(t)/t^{0.5}$ vs. $t^{0.5}$ Plots: Effect of Thickness



Effect of thickness: Calculations



Comparison with Experiments

## An Example of a Plot: Comparison between Polished and Rough Surfaces



Initial slope = 
$$\frac{2k_{exc}}{l}$$

Roughened surface exhibits greater surface exchange. Emphasizes the importance of a fine microstructure.

### Plots of $g(t)/t^{0.5}$ vs. $t^{0.5}$ : Samples of Two Thicknesses: Effect of Oxygen Partial Pressure (Decreasing)



### Plots of $g(t)/t^{0.5}$ vs. $t^{0.5}$ : Samples of Two Thicknesses: Effect of Oxvgen Partial Pressure (Increasing)



Surface Exchange Parameter as a Function of Oxygen Partial Pressure



Note: Exchange current density,  $i_o^c$ , is a monotonically increasing function of the surface exchange parameter,  $k_{exc}$ .

### Oxygen Exchange Studies in Small Intervals of pO<sub>2</sub>



## Surface Exchange Parameter as a Function of $pO_{2(0)}$ pO<sub>2</sub>: Small Intervals



## Synthesis and Characterization of Cathode Interlayer Materials

- Synthesis of rare earth oxide doped ceria powders.
- Fabrication of dense and porous ceria.
- Conductivity measurements.
- Evaluation in cells.

### Cathode Interlayer Powders made using

- 1) Fine particle size Combustion Synthesis
- 2) Uniform composition
- 3) Synthesis of two phase materials

- ) Fine (nanosize) powders.
- 2) The lower the amount of DGA, the finer the size.





### Combustion Synthesis of Sm-CeO<sub>2</sub> (SmDC)



Plot of the measured temperature vs. time for various amounts of DGA. The estimated adiabatic temperature is much higher.

### Transmission Electron Micrographs of ScDC and SmDC Powders





#### Microstructures of Dense and Porous ScDC





Dense ScDC (Sc:Ce = 20:80)

Porosity ~3.8%: Coarse grained

Porous ScDC: Porosity ~24.3%: Fine grained

#### Cell Microstructure



### Effect of ScDC Composition in the Cathode Interlayer on Performance



The greater the scandia  $(Sc_2O_3)$  content, the greater is the oxygen vacancy concentration. Other dopants will be tried soon.

### Anode + Cathode Overpotential as a Function of ScDC Composition in the Cathode Interlayer



The only variable is the composition of ScDC in the cathode interlayer. Thus, differences are due to differences in ScDC composition.

### Conductivity of Dense and Porous ScDC as a Function of Composition and Temperature





Ionic conductivity of the highly porous material is two orders of magnitude smaller.

#### **Points to note:**

- (1) The conductivity of the porous material is two orders of magnitude lower. This has implications concerning performance as a cathode.
- (2) For dense samples, note that conductivity (mostly ionic) is the highest in Ce:Sc 80:20, and the lowest in in 60:40. Part of this may well be related to microstructure (e.g. grain size). However, the cathode performance is better with 60:40 than with 80:20 may in part be due to the higher oxygen vacancy concentration in 60:40 compared to 80:20.

### Summary

- Using V-I polarization curves, effective activation polarization resistances were estimated.
- The polarization resistance increases in the following order: Anode (for H<sub>2</sub>) < Cathode < Anode (for CO).
- Surface exchange parameter was measured for LSC using conductivity relaxation method. The higher the pO<sub>2</sub>, the higher is the surface exchange parameter.
- Fine powders of doped ceria were prepared by combustion synthesis.

### Summary (contd.)

• Ionic conductivity of highly porous ceria is much lower than that of sintered ceria — implications concerning electrode behavior.

### Applicability to SOFC Commercialization

- Identification of suitable cathodes with high electrocatalytic activity at low temperatures and low oxygen pressures will facilitate SOFC commercialization by
- 1) Lowering the SOFC operating temperature, preferably below 700°C.
- 2) Enhancing performance at high oxidant utilizations.

#### Activities for the next 6-12 Months

- Investigation of the transport properties of other MIEC materials.
- Investigation of the effect of oxygen partial pressure and temperature.
- Studies on porous MIEC estimation of the surface exchange parameter.
- Evaluation of prospective materials in single cells.
- Modeling studies on cathodic polarization.