

Overview of DOE Contract No.: DE-AC-26-99FT40710 at University of Missouri-Rolla

Low Temperature Cathode Supported Electrolytes

Harlan U. Anderson (presenter) Igor Kosacki Vladimir Petrovsky Wayne Huebner

Presented at SECA Core Technology Program Review Meeting at

Hyatt-Regency at Pittsburgh International Airport Pittsburgh, PA

November 16, 2001

<u>ACHIEVEMENTS – FY 1999-2000</u>

- Films of 16% Y:ZrO₂ Characterized
 - o Ionic conductivity of <50 nm grain one micron thick films measured to room temperature (conductivity of the grains dominates).
 - o Grain size <50 nm for annealing temperatures <800°C.
 - o Produced >95% theoretical dense YSZ at 600° C.
- Films of Undoped and Gd Doped CeO₂ Characterized
 - o The electrical conductivity of both doped and undoped CeO_2 show grain size dependence.
 - o Ionic conductivity of nanocrystalline Gd doped CeO_2 less than that of the microcrystalline.

ACHIEVEMENTS – FY 2000-2001

- Films of 16% Sc:ZrO₂ Characterized
 - o The ionic conductivity is about one order of magnitude higher than YSZ.
 - o Electronic Conductivity becomes significant for oxygen activity less than 10⁻¹⁴ atm.
- Developed Cathode Substrate for Deposition of 0.5 to 2 Micron Thick YSZ Films for Use as Electrolyte in SOFCs
 - o Fabricated porous LSM substrates
 - o Synthesized nanoscale CeO₂ suspensions for deposition onto LSM substrate
 - Control of cathode surface porosity to sizes <0.1 micron
 - 3-5 micron thick CeO₂ layers planarize LSM substrate to surface roughness <0.1 micron.
 - Developed a graded LSM substrate

- Developed a process by which 1-5µm thick electrolyte layers can be produced on dense and porous substrate without shrinkage.
- Improved Clean Room (in order to make electrolyte of areas larger than 0.2 cm² our existing clean room must be improved)
 - o Doubled size.
 - o More filters and air flow.
 - o This was completed March 1, 2001.

Research Planned for FY 2001-2002

- Continue Optimization of the Cathode Substrate. Evaluate:
 - o The influence of porous CeO_2 layer on SOFC performance.
 - o The influence of the addition of LSCF into CeO_2 layer on SOFC performance.
 - o The influence of the conductivity of the CeO_2 layer on SOFC performance.
- Make Single Cell Fuel Cell Measurements
 - Cell performance as a function of electrolyte thickness and temperature.
 - YSZ electrolyte
 - CeO₂ electrolyte
 - o Cell performance as a function of electrode composition.
 - Anode
 - Cathode

- Continue Studies Related to Placing Thin Electrolyte Films onto Porous Substrates
 - o Polymer precursor onto a graded substrate.
 - o Transfer of dense films to a porous substrate.
 - o Nanocrystalline/polymer precursor composites.

YSZ thin film annealed at 400° C for 2 hrs. dg= 6nm

UMROLIA

Optical Density of YSZ thin Films on Si Substrates

- Films of Undoped and Gd Doped CeO₂ Characterized
 - The electrical conductivity of both doped and undoped CeO₂ show grain size dependence
 - Ionic conductivity of nanocrystalline Gd doped CeO₂ less than that of the microcrystalline
 - Electronic conductivity enhanced as grain size decreases below
 50 nm

Electronic & Ionic Conductivity of CeO2:20Gd

UMROLIA

The electrical conductivity of CeO_2 :20Gd thin films as a function of oxygen partial pressure and temperature. (a) $d_g = 11 \text{ nm}$ (b) 15 nm (c) 20 nm (d)36 nm. Film thickness = 300 - 400 nm.

Overview of DOE Contract No.: DE-AC-26-99FT40710 at University of Missouri-Rolla

Low Temperature Cathode Supported Electrolytes

Harlan U. Anderson (presenter) Igor Kosacki Vladimir Petrovsky Wayne Huebner

Presented at SECA Core Technology Program Review Meeting at

Hyatt-Regency at Pittsburgh International Airport Pittsburgh, PA

November 16, 2001

<u>ACHIEVEMENTS – FY 1999-2000</u>

- Films of 16% Y:ZrO₂ Characterized
 - o Ionic conductivity of <50 nm grain one micron thick films measured to room temperature (conductivity of the grains dominates).
 - o Grain size <50 nm for annealing temperatures <800°C.
 - o Produced >95% theoretical dense YSZ at 600° C.
- Films of Undoped and Gd Doped CeO₂ Characterized
 - o The electrical conductivity of both doped and undoped CeO_2 show grain size dependence.
 - o Ionic conductivity of nanocrystalline Gd doped CeO_2 less than that of the microcrystalline.

ACHIEVEMENTS – FY 2000-2001

- Films of 16% Sc:ZrO₂ Characterized
 - The ionic conductivity is about one order of magnitude higher than YSZ.
 - o Electronic Conductivity becomes significant for oxygen activity less than 10⁻¹⁴ atm.
- Developed Cathode Substrate for Deposition of 0.5 to 2 Micron Thick YSZ Films for Use as Electrolyte in SOFCs
 - o Fabricated porous LSM substrates
 - o Synthesized nanoscale CeO₂ suspensions for deposition onto LSM substrate
 - Control of cathode surface porosity to sizes <0.1 micron
 - 3-5 micron thick CeO₂ layers planarize LSM substrate to surface roughness <0.1 micron.
 - Developed a graded LSM substrate

- Developed a process by which 1-5µm thick electrolyte layers can be produced on dense and porous substrate without shrinkage.
- Improved Clean Room (in order to make electrolyte of areas larger than 0.2 cm² our existing clean room must be improved)
 - o Doubled size.
 - o More filters and air flow.
 - o This was completed March 1, 2001.

Research Planned for FY 2001-2002

- Continue Optimization of the Cathode Substrate. Evaluate:
 - o The influence of porous CeO_2 layer on SOFC performance.
 - o The influence of the addition of LSCF into CeO_2 layer on SOFC performance.
 - o The influence of the conductivity of the CeO_2 layer on SOFC performance.
- Make Single Cell Fuel Cell Measurements
 - Cell performance as a function of electrolyte thickness and temperature.
 - YSZ electrolyte
 - CeO₂ electrolyte
 - o Cell performance as a function of electrode composition.
 - Anode
 - Cathode

- Continue Studies Related to Placing Thin Electrolyte Films onto Porous Substrates
 - o Polymer precursor onto a graded substrate.
 - o Transfer of dense films to a porous substrate.
 - o Nanocrystalline/polymer precursor composites.

Overview of DOE Contract No.: DE-AC-26-99FT40710 at University of Missouri-Rolla

Low Temperature Cathode Supported Electrolytes

Harlan U. Anderson (presenter) Igor Kosacki Vladimir Petrovsky Wayne Huebner

Presented at SECA Core Technology Program Review Meeting at

Hyatt-Regency at Pittsburgh International Airport Pittsburgh, PA

November 16, 2001

<u>ACHIEVEMENTS – FY 1999-2000</u>

- Films of 16% Y:ZrO₂ Characterized
 - o Ionic conductivity of <50 nm grain one micron thick films measured to room temperature (conductivity of the grains dominates).
 - o Grain size <50 nm for annealing temperatures <800°C.
 - o Produced >95% theoretical dense YSZ at 600° C.
- Films of Undoped and Gd Doped CeO₂ Characterized
 - o The electrical conductivity of both doped and undoped CeO_2 show grain size dependence.
 - o Ionic conductivity of nanocrystalline Gd doped CeO_2 less than that of the microcrystalline.

ACHIEVEMENTS – FY 2000-2001

- Films of 16% Sc:ZrO₂ Characterized
 - The ionic conductivity is about one order of magnitude higher than YSZ.
 - o Electronic Conductivity becomes significant for oxygen activity less than 10⁻¹⁴ atm.
- Developed Cathode Substrate for Deposition of 0.5 to 2 Micron Thick YSZ Films for Use as Electrolyte in SOFCs
 - o Fabricated porous LSM substrates
 - o Synthesized nanoscale CeO₂ suspensions for deposition onto LSM substrate
 - Control of cathode surface porosity to sizes <0.1 micron
 - 3-5 micron thick CeO₂ layers planarize LSM substrate to surface roughness <0.1 micron.
 - Developed a graded LSM substrate

- Developed a process by which 1-5µm thick electrolyte layers can be produced on dense and porous substrate without shrinkage.
- Improved Clean Room (in order to make electrolyte of areas larger than 0.2 cm² our existing clean room must be improved)
 - o Doubled size.
 - o More filters and air flow.
 - o This was completed March 1, 2001.

Research Planned for FY 2001-2002

- Continue Optimization of the Cathode Substrate. Evaluate:
 - o The influence of porous CeO_2 layer on SOFC performance.
 - o The influence of the addition of LSCF into CeO_2 layer on SOFC performance.
 - o The influence of the conductivity of the CeO_2 layer on SOFC performance.
- Make Single Cell Fuel Cell Measurements
 - Cell performance as a function of electrolyte thickness and temperature.
 - YSZ electrolyte
 - CeO₂ electrolyte
 - o Cell performance as a function of electrode composition.
 - Anode
 - Cathode

- Continue Studies Related to Placing Thin Electrolyte Films onto Porous Substrates
 - o Polymer precursor onto a graded substrate.
 - o Transfer of dense films to a porous substrate.
 - o Nanocrystalline/polymer precursor composites.

