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‘l Desired Improvements on Anode
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Ability to use hydrocarbon fuels (e.g. natural gas,
propane, gasoline, diesel) without coking

— Reduce balance of plant cost and volume
— Make small-scale power plants viable

Reduction-oxidation stability

— Needed for small power plants with frequent on/off
cycling
— Useful for large power plants

Sulfur tolerance
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L Anode Materials
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Conventional Anode — Ni-based cermets

— Works with H,, methane, methanol
At low T for methane and methanol 12
— Coking with higher hydrocarbons

— Volume change, performance decrease upon reduction/oxidation

Alternate compositions needed for higher hydrocarbons
— Cu-Ceria-YSZ 345
— Ceramic based (Ceria, LaCrO,) &8
— No coking, but electrochemical performance worse than Ni-

cermets

1E.P. Murray, Nature 400, 649. SH. Kim, J. Electrochem. Soc. 148, A693.
E.P. Murray, SOFC VI, 1001. 6C. Xia, Solid State Letters 4, A52.

3S. Park, Nature 404, 265. T. Norby, 1st Euro. SOFC Forum Proc., 217.
4S. Park, App. Cat. A 200, 55. 8S. Primdahl, J. Electrochem. Soc. 148, A74.
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‘l Cell Performance Comparison:
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‘l Cell Performance Comparison:
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- Hydrocarbon Performance:
o Methane
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- Hydrogen-Air Cycling
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‘l Cell Test Results
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Direct operation with methane, propane, and butane
without carbon deposition

Cells exhibit stable behavior during operation
Good stability during redox cycling in initial tests

Performance similar to other direct hydrocarbon cells
despite thick electrolyte:

Hydrogen = Methane  Propane Butane

Anode
Cu-Ceria-YSZz4 0.30 0.115 - 0.105
atlaL el 0.16 0.128 0.130 0.085
Anode

“Park, Gorte, et.al. Applied Catalysis A: General (2000) 55-61
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- Conclusions
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Ceramic-based anode is promising for hydrogen or
hydrocarbon-fueled SOFCs

Considerable fuel-flexibility with improved
performance expected upon varying:
— Properties and amounts of electronic and ionic conductors
— Metal catalyst composition and content
Ceramic-based anode can potentially be prepared as
support for thin-electrolyte SOFCs
— Co-sintering with YSZ should be feasible

Applied Thin Films, Inc.



Integrated Solid Oxide Fuel
Cells

(ISOFCs)



ISOFC Concept
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Closed end

Individual elements consist
of many cells

— High voltage, low current
— Current collection at ends

No separate interconnects

Flattened tubes:

— high power-to-volume ratio
— minimal sealing problems

— Number of flow fields
reduced by 2 relative to
planar SOFC



Other Advantages

Thermo-mechanical properties

— Support material is not an active cell component: can be
chosen for thermo-mechanical properties.

Manufacturing

— Eliminates need of pressure contacts between SOFC
and IC plates: reduced flatness requirements

— Small-area cell design more tolerant of thin electrolyte
defects

— Flat tube geometry conducive to screen printing
Stack Electrical Performance

— Short electrode current paths — low ohmic loss
— Minimizes effect of pressure contact resistances



Related Work:
Banded Tubular Cells

Cells and ICs deposited In bands around

calcia-stabilized zirconia (CSZ) support tubes
—A. O. Isenberg, SSI, 3/4, 431 (1981)

— N. Hisatome, N. Nagata, T. Saishoji, and S. Kakigami,
SOFCIV(1995), p 216

—Rolls-Royce
Problems:

—Difficulty of patterning deposits around full width
of tube : e.g. slurry coating and EVD

—Large cell widths

—Current shunting due to conductivity of CSZ
support at high T




Current Shunting by Support

Conductivity measured for PSZ support (3 mm thick, ~30
vol% porosity)

Assumptions for calculation:
— 10cm x 10 cm ISOFC
- 0.5W/cm?at 0.7V (1.4 A, 31.5V)

T 600°C 700°C 800°C
Conductivity | ¢ e+ 194 2.03 x 103 5.32 x 10-3
(S/cm)
Leakage 0.006 A 0.02 A 0.05 A
current (0.42%) (1.4%) (3.6%)

Substantially reduced loss for low-T SOFCs



Cross-Sectional SEM Image
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Conclusions

Integrated SOFC potentially offers unique
performance/processing/stacking advantages

Initial demonstration of integrated SOFC structure
— First round porous substrate development

— Approximate substrate-layer shrinkage match

— Screen printing of patterned components

Substantial processing development required to
demonstrate good stack performance
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